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As computers get smaller, their use is becoming more widespread and ubiquitous 
and soon they will be all around us. They will be sensing their environment as part 
of wireless sensor networks and communicating their findings to us. These nodes 
are battery-operated and need to be small and cheap to be economically viable, 
and have only little CPU power and memory available...

This dissertation describes and motivates the design and implementation of the 
SensorScheme platform, a programming language and interpreter designed to 
make available proper methods and abstractions to program wireless sensor 
networks effectively, safely transport new programs to running networks, and 
reduce the size of programs.
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Preface

Any sufficiently complicated C or Fortran program contains an ad
hoc, informally-specified, bug-ridden, slow implementation of half of
Common Lisp.

Greenspun’s Tenth Rule of Programming

The document in front of you is the culmination of almost five years of work
in which I have been attempting to gain knowledge on the relatively new field
of wireless sensor networks and contribute some of my new insights back to
the scientific community. It has been an interesting and exciting journey which
has taught me a lot about a great variety of subjects, stretching large parts of
computer science research, from communication protocol design to distributed
database systems, from CPU design to the theory of programming languages.

Before we address the content of this dissertation I’d like to introduce the
reader to the way in which it came about. After all, the motivations and inten-
tions behind scientific discoveries do often explain and illustrate these discoveries
in an interesting way.

At the start of this research I had already been getting myself familiar to the
field of wireless sensor networks by way of course assignments and my Master’s
thesis. As I was looking for a topic to fill my doctoral thesis with I encountered
over and over again a expressions of how constructing wireless sensor network
programs was so much harder than ‘usual’ programs, something that completely
matched my own experience. If sensor networks ever were to contribute to
improving society and our quality of life, this might be the issue most in need
of being addressed. As potential users of this technology, we all want reliable
technology that doesn’t surprise us with random crashes or lockups (as we more
or less have come to expect of computers). As software developers, a pleasurable
experience in creating the next great application of this new technology would
certainly improve our life.
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During these early days I stumbled upon the quote at the top of this preface,
which started my investigations into the Lisp programming language, which I
did not know. The essays by Paul Graham 1 and others on their experience with
and opinions on this language certainly raised my curiosity. "If this language
really is as great and powerful as they say, I need to know what is going on."

While I would like to refrain from ‘educating’ the community about the
benefit of using ‘Lispy’ languages in this new field, it has been hard at times
to keep from doing just that. And in a way, this dissertation is my attempt at
showing what this approach can bring to wireless sensor network platforms.

1http://www.paulgraham.com/articles.html

Picture obtained from the xkcd webcomic by Randall Munroe at xkcd.com

http://www.paulgraham.com/articles.html


Abstract

As computers get smaller, their use is becoming more widespread and ubiqui-
tous. Soon computers will be all around us, interacting with us in our daily lives
as networks of smart objects, or sensing their environment and communicating
its findings as wireless sensor networks.

These wireless sensor network devices, or sensor nodes as we call them,
communicate with each other using low data rate digital radios. The devices
are battery-operated and need to be small and cheap to be economically viable.
Naturally, research in this field focuses on making efficient use of the scarce
resources available, such as computation time and communication. The limited
memory complicates implementation of many of the features common on ‘larger’
computers.

Writing applications on severely limited sensor network nodes is challenging
for a number of reasons.

First, finding proper methods and abstractions with which to program wire-
less sensor networks effectively is an ongoing process. Small size of sensor net-
work programs is crucial, to minimize development time, duration of transport
and memory use. Powerful and effective abstractions and tools may reduce the
size of programs and extend their capabilities.

Second, the challenge is to program devices with their desired behavior. For
some applications only once, or infrequently, in other cases regular reprogram-
ming is required. The low bandwidth communication and little memory make
the transport of programs and their execution a non-trivial task. Furthermore,
for wirelessly accessible and (re)programmable devices protection from loading
malicious applications is also highly desirable.

This dissertation motivates and describes the design and implementation
of the SensorScheme platform. SensorScheme is a programming language and
interpreter designed to addresses the above challenges, in the following ways:
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• SensorScheme makes use of a program interpreter to achieve platform
independence and hardware protection, and to facilitate wireless (re)pro-
gramming of sensor nodes. SensorScheme’s interpreter is based not on a
virtual machine design, common in the state of the art. Instead, Sensor-
Scheme’s interpreter evaluates expressions, represented as trees of linked
lists, inspired by its heritage of the Scheme programming language.

• SensorScheme is designed to use the state of the art in wireless sensor net-
work programming techniques such as automatic memory management,
multi-threading behavior, and the reduction strategy for combining sen-
sor data from multiple nodes. SensorScheme advances the state of the
art, making available techniques such as closures and continuations, and
programming abstractions such as higher order functions. Furthermore,
SensorScheme makes use of its property of homoiconicity – having the
same representation of code and data, to wirelessly transport and dynam-
ically load entire programs as well as single functions.

• The availability of this extended set of programming abstractions and tech-
niques makes it possible to express sensor network applications concisely.
This reduces the memory and communication bandwidth requirements for
storing and transporting applications.

• SensorScheme introduces ObjectStreams, a communication technique us-
ing serialization to automatically encode and decode messages. Object-
Streams is integrated into the language and interpreter to facilitate the
transport of programs into the network. It furthermore simplifies writing
communicating programs by removing the program’s dependency on the
packet size of the underlying communication hardware.

• SensorScheme introduces a method of macro-programming networks of
heterogeneous sensing and actuation devices. It simplifies construction
and maintenance of these networks by writing a single network-wide pro-
gram that includes the functionality of all nodes in the network. Spe-
cialization of this network-wide program (by partial evaluation) produces
node-specific programs that include only the functionality required by this
node, resulting in significant size reduction compared to the network-wide
program.

We motivate and illustrate SensorScheme’s design through the use of four
application scenarios, two of which are extensively dealt with in the literature,



while the other two present challenges of programmability unaddressed by the
state of the art.

Using example implementations of each of the application scenarios this
work presents the programming techniques and abstractions provided by Sensor-
Scheme, aimed at reducing the complexity of writing sensor network applica-
tions.

We also evaluate the SensorScheme platform using these example imple-
mentations. We show its suitability for wireless sensor network platforms in
terms of communication, energy, computation and memory requirements for
the presented applications. We furthermore assess SensorScheme’s ease of pro-
gramming measured as the program’s sizes compared to the state of the art.

As is generally the case, a higher level of abstraction is to be traded off for
an increase in resource consumption such as computation time, memory use,
communication bandwidth, and ultimately energy.

Our results show that the computation overhead caused by interpretation is
acceptable for typical WSN scenarios, causing no significant slowdown and only
a minor increase in energy use.

Next, we show that while the ObjectStreams communication mechanism
requires some communication protocols to be restructured, it offers comparable
communication requirements for a similar level of application functionality.

Furthermore, we demonstrate that (interpreted) SensorScheme programs can
be considerably shorter than their natively compiled counterparts. This makes
it possible to provide a wider range of application functionality with the mem-
ory available to WSN nodes, while making it easier to write these programs.

In conclusion, even for resource-scarce wireless sensor networks the bene-
fits for programmability of dynamic, high-level languages are within reach for
wireless sensor networks, and offer levels of functionality not available in other
ways.





Samenvatting

Omdat computers steeds kleiner worden, is het gebruik ervan steeds meer wijd-
verbreid en alomtegenwoordig. Binnenkort zullen computers overal om ons heen
zijn, in wisselwerking met ons in ons dagelijks leven als netwerken van slimme
objecten, of meten hun omgeving en communiceren hun bevindingen als draad-
loze sensor netwerken.

Deze draadloze sensor netwerk apparaten, of sensor nodes zoals wij ze noe-
men, communiceren met elkaar met behulp van lage datasnelheid digitale ra-
dio’s. De apparaten werken op batterijen en moeten klein en goedkoop zijn om
economisch levensvatbaar te zijn. Onderzoek op dit gebied richt zich op het
maken van een efficiënt gebruik van de schaarse middelen die beschikbaar zijn,
zoals de rekentijd en communicatie. De beperkte geheugenruimte bemoeilijkt
de uitvoering van veel van de kenmerken die horen op ‘grotere’ computers.

Het schrijven toepassingen op zeer beperkte sensor netwerk nodes is een
uitdaging om een aantal redenen.

Ten eerste, het vinden van een goede methoden en abstracties waarmee het
programmeren van draadloze sensor netwerken effectief is, is een doorlopend
proces. Het is van cruciaal belang dat sensor-netwerk programma’s kort zijn,
om de ontwikkeltijd, duur van het transport en het geheugengebruik te mini-
maliseren. Krachtige en effectieve gereedschappen kunnen vermindering van de
omvang van de programma’s en het uitbreiden van hun mogelijkheden realiseren.

Ten tweede, de uitdaging is om apparaten te programmeren met hun gewen-
ste gedrag. Voor sommige toepassingen slechts een keer, of zelden, in andere
gevallen is regelmatige herprogrammering nodig. De lage bandbreedte commu-
nicatie en weinige geheugen beschikbaar voor het transport van programma’s
en de uitvoering ervan maakt dit een niet-triviale taak. Bovendien, als draad-
loos toegankelijke en (her)programmeerbare apparaten is bescherming tegen het
laden van kwaadaardige applicaties ook zeer wenselijk.
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Dit proefschrift beschrijft en motiveert het ontwerp en de uitvoering van
het SensorScheme platform. SensorScheme is een programmeertaal en executie-
omgeving bedoeld om de bovengenoemde uitdagingen te adresseren, op de vol-
gende manieren:

• SensorScheme maakt gebruik van een programma interpeter om platfor-
monafhankelijkheid en hardware bescherming te bereiken, en om draadloos
(her)programmeren van de sensor nodes te vergemakkelijken. De Sensor-
Scheme interpreter is niet gebaseerd op het ontwerp van een virtuele ma-
chine, wat gebruikelijk is in de huidige stand van de techniek. In plaats
daarvan evalueert de SensorScheme interpreter uitdrukkingen, vertegen-
woordigd als bomen van gelinkte lijsten, geŢnspireerd door haar erfgoed
van de programmeertaal Scheme.

• SensorScheme is ontworpen om de stand van de techniek in de draadloze
sensor netwerk programmeren technieken gebruiken, zoals automatisch
geheugenbeheer, multi-threading gedrag, en de reductie strategie voor het
combineren van sensorgegevens uit meerdere nodes. SensorScheme ver-
betert op van de stand van de techniek door het beschikbaar maken van
technieken zoals closures en continuations, en programmeer-abstracties
zoals hogere orde functies. Bovendien maakt SensorScheme gebruik van
de eigenschap van homoiconiciteit, voor draadloos transport en dynamisch
laden van complete programma’s of slechts enkele functies.

• De beschikbaarheid van deze uitgebreide set van programmeer-abstracties
en technieken maakt het mogelijk om bondig sensornetwerk toepassin-
gen uit te drukken. Dit vermindert het geheugen en de communicatie-
bandbreedte eisen voor de opslag en het transport van applicaties.

• SensorScheme introduceert ObjectStreams, een communicatie-techniek die
serialisatie gebruikt voor het automatisch coderen en decoderen van be-
richten. ObjectStreams is geïntegreerd in de taal en de interpreter om
het vervoer van programma’s in het netwerk te vergemakkelijken. Het
vereenvoudigt bovendien het schrijven van programma’s door het verwij-
deren van de afhankelijkheid van de pakket-grootte van de onderliggende
communicatie-hardware.

• SensorScheme introduceert een methode van macro-programmering van
netwerken van heterogene sensor nodes. Het vereenvoudigt de bouw en
het onderhoud van deze netwerken door het schrijven van een netwerk-
breed programma dat de functionaliteit van alle apparaten in het netwerk



bevat. Specialisatie van dit netwerk-brede programma (door partiële evalu-
atie) produceert node-specifieke programma’s die alleen de functionaliteit
bevat vereist voor ieder individuele apparaat, wat resulteert in aanzienlijke
verkleining in vergelijking met het gehele netwerk-brede programma.

Wij motiveren en illustreren het ontwerp van SensorScheme door gebruik
te maken van vier applicatie-scenario’s, waarvan twee uitvoerig zijn behandeld
in de literatuur, en de andere twee bevatten uitdagingen van de programmeer-
baarheid ongeadresseerd in de stand van de techniek.

Met behulp van voorbeeld-implementaties van elk van de scenario’s presen-
teert dit werk de programmeer-technieken en abstracties van SensorScheme,
gericht op het verminderen van de complexiteit van het schrijven van sensor-
netwerk toepassingen.

We evalueren ook het platform met behulp van deze SensorScheme voorbeeld-
implementaties. We tonen de geschiktheid ervan voor draadloze sensor netwerk
platforms op het gebied van communicatie, energie, rekensnelheid en geheugenge-
bruik voor de gepresenteerde toepassingen. Tevens beoordelen wij SensorScheme’s
gemak van programmering gemeten als de programma-groottes ten opzichte van
de stand van de techniek.

Zoals meestal het geval is, moet een hoger niveau van abstractie worden
afgewogen tegen een verhoging van het verbruik van rekentijd, geheugengebruik,
communicatie-bandbreedte, en uiteindelijk energie.

Onze resultaten tonen aan dat de extra rekentijd veroorzaakt door de inter-
preter aanvaardbaar is voor typische WSN scenario’s, waardoor er geen signifi-
cante vertraging is en slechts een kleine toename van het energieverbruik.

Vervolgens laten we zien dat hoewel ObjectStreams communicatie vereist
dat communicatie protocollen enigszins moeten worden geherstructureerd, het
vergelijkbare communicatie-eisen voor een soortgelijke toepassing biedt.

Bovendien tonen we aan dat geïnterpreteerde SensorScheme programma’s
aanzienlijk korter kunnen zijn dan hun compileerde tegenhangers. Dit maakt
het mogelijk om een breder scala van toepassingen en functionaliteit te bieden
met het beschikbare geheugen van WSN-apparaten, en het makkelijker te maken
om deze programma’s te schrijven.

Concluderend, de voordelen voor de programmeerbaarheid van de dynami-
sche, high-level talen zijn binnen bereik zelfs voor de kleine, simpele apparaten
zoals gebruikt in draadloze sensor netwerken; zulke talen bieden niveaus van
functionaliteit die niet op andere andere manieren beschikbaar zijn.
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Chapter 1

Introduction

Recent technological advances in low power digital radio transmitters and re-
ceivers, microelectromechanical systems (MEMS) sensors and low power silicon
integrated circuits bring closer the image of “calm technology that recedes into
the background of our lives” [Wei96], as expressed by Mark Weiser, one of
the first visionaries in the field of Ubiquitous computing. It has created a new
domain of computing, wireless sensor networks (WSNs) that sense their envi-
ronment, and collectively compute and reason upon the perceived state of the
world around them. Already, WSNs have found applications in the field of en-
vironmental monitoring, and smart buildings. In the foreseeable future wireless
sensor networks can also have a great impact in the supply chain management
business. WSN nodes attached to crates, roll containers, pallets, and shipping
containers can monitor the transportation process, and raise an alarm when the
transport plan is not properly executed.

1.1 WSN research

Building WSN applications involves many of the hard topics in computer sci-
ence, such as distributed and parallel computing, reliability and redundancy,
network protocol design, and real time interaction. The hardware platforms
used, with only minimal resources, have necessitated a full redesign and imple-
mentation of all basic functionality, especially scheduling and synchronization,
and communication protocols, with strong attention for efficiency.

At the start of the work laid out in this dissertation the research in these fields
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had started to take shape, and early results were reported. A variety of hardware
platforms for WSNs had been created, and operating systems, communication
protocols and support software had been designed from the ground up to enable
use of these hardware platforms. These early results demonstrated that the key
to success is compactness and efficiency.

In the same time, however, these early successes raised the issue of the
need of powerful high-level programming methods and abstractions, to reduce
the complexity of the applications and bring programming these networks of
computing within the reach of a wider audience.

Most importantly, a clear need emerged to program the devices after deploy-
ment, when the devices are accessible only through their wireless communica-
tion interface. While there is a clear need to (re)programming devices using the
wireless connection, it also poses a number of risks and challenges.

First and foremost, facilitating wireless reprograming necessarily reduces the
efficiency and increases size of programs running on these devices. The small size
and low cost of WSN platforms necessitates efficiency and small size. Inclusion
of reprogramming facilities forces design trade-offs to keep the devices usable
and useful. Next, the possibility of wireless access to the devices while they are
deployed – and therefore publicly accessible – raises a number of issues regarding
security and protection, that should be taken into account.

Furthermore, one of the research areas that receives much attention is the
question how to write programs for wireless sensor networks. While this is an
ongoing debate in any field of computer science, for sensor networks the question
is even more pressing, because wireless sensor networks combine a number of
properties in a unique way:

Inherently distributed
Each device is strongly coupled to a physical location or object. Therefore
the WSN platform consists of a multitude of interconnected devices.

Data parallelism
Especially in environmental monitoring applications, all nodes execute
essentially the same program, each operating on different data, received
through its sensors.

Unreliable, dynamic network
In contrast to conventional distributed and data-parallel systems, the net-
work connecting WSNs is not a dependable system interconnect, but a
low-bandwidth, high-loss connection. Moreover, the structure of the net-
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work – which nodes are connected to each other – may change continuously
to some extent, even for non-mobile networks.

Autonomous operation
The projected size of networks precludes manual configuration. The net-
work must run unaided continuously for a long stretches of time, while
coping with changing network connections and additions and removals of
nodes.

End-user programmability
Using a wireless sensor network essentially means programming it to per-
form a task autonomously without user interaction. Essentially this is a
form of programming that has to be performed by the users of the network
themselves.

While each of these issues appear to be hard problems by themselves, wireless
sensor networks combine all of these together.

1.2 Focus of thesis

This dissertation proposes a new solution to the above–mentioned problems.
The proposed solution is practical and application-oriented: it attempts to pro-
vide efficient solutions to a set of application scenarios given the availability
of wireless sensor network hardware that makes small and abundant wirelessly
communicating and computing devices both possible and economically feasible.

In this dissertation we focus specifically on sensor nodes like the Mica [HC02]
and Telos [PSC05] motes. Larger device classes, such as the Intel Imote 2 [Croa]
do not have the severe memory and processing limitations of the smaller motes,
but we focus on these smaller platforms because, even as Moore’s law progresses,
they are more competitive in terms of price, energy use and ultimately cost of
ownership. These platforms have the following limitations:

Limited energy budget
Typical usage scenarios for WSNs demand a long battery lifetime, since
frequent replacement or recharging would be too impractical or costly. All
aspects of WSN software design are therefore focused towards minimizing
energy use. Most energy is consumed by the radio hardware and sensors,
so minimizing the use of those is the most effective way to minimize energy
use.
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Very limited memory
The target platforms contain typically less than 64 KB of program mem-
ory, and 10 KB of RAM or less. These limits are hard, since no virtual
memory mechanisms are available. Current practice shows that the lim-
ited RAM is most pressing, since WSN applications are usually simple
and small enough to fit in program memory.

Simple, low speed CPUs (< 10 MHz 8/16 bits)
This limitation is the least challenging one. Current sensor network appli-
cations typically have CPU usage of only a few percent, partly because the
small working memory limits the data available for processing, and, more
importantly, duty cycles are low as a strategy for minimizing energy use.
Furthermore, CPU cycles are comparatively cheap. On current WSN plat-
forms, sending a single message and receiving it on another node takes the
amount of energy equivalent to as much as half a second of computation
time.

1.2.1 Naming

The hardware platform on which this research is based, is referred to in the
literature by a variety of names. Mote is the name used for some of the early
platforms. More generally, node is used as an indication of the devices’ role
as part of a network, with derived uses like sensor node or simply sensor, as
explicit references to the embedded sensors and the wireless sensor network of
which they are part.

For certain application domains, typically more interactive and heteroge-
neous such as smart buildings, the collective set of such devices are referred to
as smart object systems or cyber-physical systems and an individual device an
object or artifact.

Still, the term wireless sensor network is more widely used and agreed upon.
In this dissertation, we will refer to collections of devices as wireless sensor
networks or WSNs for short. Individual devices will be referred to as sensor
node or node in short, or simply as device.

1.2.2 SensorScheme

This dissertation presents a programming language and runtime environment
called SensorScheme, especially designed to allow sensor network applications
to be loaded onto the nodes in a deployed network using the wireless interface.
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SensorScheme’s design produces small programs that can be loaded onto the
network in a variety of ways – either to individual nodes, several nodes together
or onto the entire network. Together this ensures the process of programming
or reprogramming sensor nodes to be efficient and adaptable to its use.

SensorScheme is designed to be easily programmable, resulting in small and
easy to understand programs. We have achieved this by providing a level of
abstraction matching WSN applications, and allowing programmers to add new
abstractions themselves. SensorScheme incorporates the state of the art of pro-
gramming abstractions for wireless sensor networks, and adds new ones to fur-
ther simplify the task of writing a wireless sensor network program.

As is generally the case, the benefit of higher abstractions is traded for re-
duced efficiency of execution time and memory use. For the resource-lean plat-
forms of wireless sensor networks, efficiency is of special importance. Therefore,
during the design and implementation of SensorScheme efficiency has received
much attention, and we will show that performance degradation is within ac-
ceptable limits.

1.3 Contributions

This dissertation proposes a complete software platform taking into account
many of the research topics receiving much attention in the WSN community,
and makes a number of contributions in some of these areas. Even though
these topics are well-researched, this dissertation uses a different approach to
abstractions for WSN applications, thereby creating solutions unique in the
WSN architecture landscape.

The research contributions of this dissertation are the following:

1. The first contribution of SensorScheme is to enable loading and program-
ming wireless sensor nodes using wireless communication. This has been
achieved for severely restricted hardware platforms intended to be small,
cheap and energy-efficient.

(a) Wireless programming of the nodes is safe, without the risk of damage
or dysfunction of the nodes caused by loading faulty or malicious
programs.

(b) Programs to be loaded wirelessly are platform independent, and may
execute on devices with different hardware characteristics such as
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CPU architecture, amount of memory, wireless communication pe-
ripherals, and the number and kind of sensors, actuators and other
peripherals.

(c) Wirelessly loaded programs for typical WSN applications are small,
which benefits the speed and energy efficiency of the loading process
and preserves memory.

2. The second contribution concerns the methods of building wirelessly load-
able programs. SensorScheme incorporates many of the techniques and
abstractions present in the state of the art to reduce the complexity and
size of wireless sensor network programs. While these have individually
been available in other systems, SensorScheme is the first platform to
provide these techniques together in a wirelessly reprogrammable system.
Additionally, SensorScheme introduces new tools and abstractions to fur-
ther improve the usability of wireless sensor networks.

(a) SensorScheme enables use of the functional programming paradigm,
which aids to minimize the size of programs, and facilitates the use
of reduction strategies (see Section 2.5.2) in WSN programs.

(b) SensorScheme offers program structuring techniques such as closures
and continuations (explained in Chapter 5) that can be used to em-
ulate multi-threading and object orientation.

(c) SensorScheme includes ObjectStreams, a communication mechanism
that allows programs to communicate messages containing language-
level values rather than arrays of bytes. Messages may be of arbitrary
size, possibly occupying multiple radio packets, without knowledge or
concern to the programmer for filling and transmitting the individual
packets. To our knowledge no other WSN operating systems, com-
munication libraries and abstractions have aimed to provide similar
convenience and platform independence.

(d) SensorScheme is extended with a partial evaluator to specialize a
general program describing the behavior of the entire network into
node-specific variants that are significantly shorter. We use this spe-
cialization method as a new way to macro-program heterogeneous
sensor networks.
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1.4 Structure of thesis

Chapter 2 describes the background of the field of Wireless Sensor Networks
research: The applications expected to be addressed using this technology; the
embedded computer devices in use, their computational resources and energy
consumption. It furthermore reviews the state of the art in WSN research of
topics that are relevant for the material presented in this dissertation.

Chapter 3 describes some concrete application scenarios which we will use
to illustrate the concepts and design trade-offs of the software architecture de-
scribed in later chapters, and to derive concrete requirements for the described
software architecture to be validated in Chapter 9.

Chapter 4 motivates the architectural decisions of our software platform,
based on the requirements posed by the application scenario’s of Chapter 3 and
the existing solutions described in Chapter 2.

Chapter 5 introduces the use of the SensorScheme platform by presenting
implementations for the application scenarios of Chapter 3.

Chapter 6 discusses the design of the SensorScheme program interpreter,
memory organization and data types, and the overall system architecture.

Chapter 7 describes the ObjectStreams communication mechanism devel-
oped for the SensorScheme platform.

Chapter 8 describes an extension to the SensorScheme architecture of previ-
ous chapters to facilitate macro-programming of heterogeneous sensor networks.

Chapter 9 evaluates various aspects of the SensorScheme platform by mea-
suring computation time, memory use, code size and communication overhead.

Chapter 10 concludes this work.

1.5 List of Publications

This dissertation is based on previously published technical reports or conference
proceedings. The material presented in the subsequent chapters is based on the
content of these publications.

• L. Evers, J. Kuper, Partially Evaluated Sensor Networks: Automatic Spe-
cialization for Heterogeneous Wireless Sensor & Actuator Networks. In:
Proceedings of the 2009 ACM SIGPLAN workshop on Partial evaluation
and program manipulation, january 19-20, 2009, Savannah, GA, USA. pp.
73-80. [EK09]
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Chapter 2

State of the Art

This chapter presents the state of the art in different areas of WSN research
that bear relevance to the topics discussed in this dissertation. It starts with
a description of the applications that are expected to be addressed with WSN
technology. Subsequently, this chapter reviews the hardware that makes up the
devices that we study, past, present and future. Next, it discusses the software
platforms developed for these hardware platforms and many of the relevant
issues in designing software platforms for wireless sensor networks.

2.1 Applications

Before we take a look at the technical aspects of wireless sensor networks, this
section gives an account of the sort of applications researchers have attempted
to realize. Römer and Mattern [RM04] present a survey on the large and varied
application space for wireless sensor networks. Here we present a similar ac-
count, with the intent to give an indication of the types of problems researchers
have tried to solve using wireless sensor network technology.

2.1.1 Battlefield monitoring and border patrol

Early research on sensor networks has been inspired by an application that has
received much attention: Using small sensor devices to monitor a battlefield,
country border or other large area and report to military personnel when persons
or vehicles enter an area and keep track of their movements.
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The proposed method to achieve this is by deploying wireless sensor nodes
into the monitored area either by hand or dropped from the air. The nodes use
a number of sensors such as magnetometers and micro-radars to detect vehi-
cles. They communicate among each other to determine an accurate location of
the vehicle, before transmitting this location to a human operator outside the
network.

One of the first academic research projects – the Smart Dust project [WLLP01]
at the University of California, Berkeley targeted this application scenario. It re-
sulted in a small field experiment, using both hand-placed as well as air-dropped
sensor nodes capable of detecting vehicles.

Later projects focused on this scenario, improving various aspects of hard-
ware design [HKS+04, ARE+05], or on algorithms and protocols to improve tar-
get detection and tracking [The03, GJP+06, NW04, Röm04, LCL+03, GKGM05,
JSS00, WM04, BHS03, KR05, SLO05, SHW08, BGL+07, YS03, GBCT06, LC02,
WSBC04, LRZ03, ABC+04].

Chapter 3 presents this application as one of the example scenario’s used
throughout this thesis.

2.1.2 Environmental monitoring

One of the most prominent applications of wireless sensor networks is its use in
environmental monitoring. To this end, devices periodically sense environmental
parameters such as light, temperature and humidity, and transfer the sensed
data to a computer outside the network, where it can be stored in a database
or processed otherwise. Various methods have been investigated to transport
only a summary or subset of the data, to reduce the traffic across the wireless
network and extend battery life of the nodes.

One method of communication reduction stands out in particular, because
of its broad acceptance and frequent use. Using this method the network is
arranged in a tree-shaped structure, where every node selects a parent node
that connects it to the network’s root node, possibly via multiple transitions
or hops. When it is acceptable to receive only summary information from the
network, such as maximum, minimum or average values (or any other associative
and commutative function), each intermediate node calculates the summary of
data received from its child nodes. This method is generally referred to as
aggregation.

A sizable number of test beds with deployed networks have been reported al-
ready, monitoring environments as diverse as bird nesting sites [MCPA02], vine-
yards [Int], redwood forests [Yan03], bridges [JDK+05], potato fields [LBV06],

10



2.1. APPLICATIONS

coral reefs [ZCH07] and volcano’s [WAJR+05]. We also use this application as
one of the scenarios described in Chapter 3.

2.1.3 Forest fire detection

An environmental monitoring application that has caught special attention is
the use of wireless sensor networks to detect forest fires. While this bears many
similarities with other environmental applications, it deserves special attention
due to the specific interest by many researchers [Fir, BHS03, KFG+03, FRL05].
The application is also somewhat different in nature, in the sense that instead
of regularly reporting the environmental parameters, the sensor network only
needs to report the (very rare) event of a detected fire.

2.1.4 Mobile wildlife monitoring

Aside from the previously mentioned applications where the network is deployed
on a fixed location, more mobile monitoring scenarios have received attention.
One of the earliest was the Zebranet [JOW+02] project, using sensor nodes
attached to a herd of zebras to track their movement, in January of 2004. Later
projects have used WSN technology to monitor cattle [May04].

2.1.5 Smart building applications

WSN technology has been considered valuable in other places as well, includ-
ing well-accessable and connected places like homes and offices. Connor et al.
[CHK+04] present two office applications. The first one uses WSN technology to
keep track of available meeting rooms and to inform workers using status nodes
in the hallways of the building. The second application, Follow-Me is an active
visitor guidance system to assist visitors in navigating through a building.

Smart homes and offices, containing wirelessly connected sensors (ie. in-
frared presence detectors, break beam sensors, buttons and switches) and ac-
tuators (power switch, locks) in the home, kitchen or office to. These sensors
can then be instructed to monitor the behavior of occupants, automate routine
tasks to increase convenience or safety [BK06, AYKC04, VMKP03, LFO+07,
KOA+99]. Within the smart home application space special attention is given
to elder care [Sta02] as well.

A related application is smart parking spaces assisting in finding a parking
space [CSC06, WZL06, KGMG07].
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While most of the networks involved in these applications are static, these
applications differ from environmental monitoring in their focus on a combina-
tion between sensing and actuation. Sensor data from nodes in the network
flows to other nodes instead of only to outside network operators.

Chapter 3 describes a possible smart building application as one of the ex-
ample scenarios.

2.1.6 Logistics

The use of wireless sensor network devices holds promise for the transport and
logistics business. Besides the passive Radio Frequency Identification (RFID)
chips are gaining acceptance in some companies, active communication and
computation devices such as active sensor nodes may prove valuable as well.
WSN devices are proposed for a variety of logistics tasks, ranging from electronic
seals [DBK+04], to autonomous enforcement of security guidelines [Kno04], or
tracking and tracing of shipments [SFCB05, MP04].

This work is partly based on some contributions involving logistics applica-
tions [EHK+07e, EBMP+05], and uses a logistics scenario in Chapter 3.

2.2 Hardware architecture

The vision of WSNs is to embed computing devices into the environment or
inside daily objects. To make this practically feasible, the research focuses
on use of small, battery-operated devices, accessible through wireless network
connections. The devices may contain a variety of sensors to observe their
environment, and are devoid of user interfaces like key pads or screens.

In contrast to other battery-powered devices like cell phones or PDAs, wire-
less sensor networks require long unattended operation. Frequent battery re-
charging or replacement is not possible once devices are deployed – especially in
large geographic areas or in hard to reach places, such as in tree tops [Yan03]
or out at sea [ZCH07]. Consequently, energy efficiency is of prime importance.

The devices must also be cheap, to allow their deployment in the quantities
envisioned. The hardware platforms considered are therefore built out of some
of the smallest and simplest components currently available.

Figure 2.1 shows some of the devices that have been developed.

12



2.2. HARDWARE ARCHITECTURE

(a) Spec mote (b) Mica2 mote

(c) Sun Spot (d) Imote 2

Figure 2.1: Some of the devices developed for Wireless sensor network research
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2.2.1 Platform classes

Hill et al. [HHKK04] review some of the platforms developed for wireless sen-
sor network research, and group those into four different categories, based on
their energy use and hardware characteristics. In this section we adopt their
classification, but use different names, to be used for future reference in this
dissertation. Table 2.1 lists a number of the developed devices, which we will
use as examples.

Single chip sensor nodes. These are the first class of devices: custom single-
chip IC’s that merge computation, communication and sensing into a single chip.
To date the Spec mote [Hil03] (see figure 2.1 a, table 2.1.1) serves as the primary
example. It has very limited computational resources (CPU and RAM) and low
power radio, and communicates only to more powerful devices. This class of
devices is custom-built to achieve minimal form factor and energy use, at the
expense of very limited computational resources, and may be used to address
only the simplest of tasks. Currently these devices are unsuitable to create
self-sustaining multi-hop networks, and may be usable only at the edges of a
network.

Low power sensor nodes. This second class of devices are so-called COTS
devices, built from Commercial Off-The-Shelf components. With energy use
and price in mind, these devices are equipped with slow 8- or 16-bit micro-
processors and a few kilobytes of working memory (RAM) and code memory
(flash ROM).

The devices use low-power radio chips, capable of short-range, low data rate
communication. Low power single chip radios are a relatively new development,
and as such, standardization is just emerging. The prominent standard, IEEE
802.15.4 [IEE06], has been adopted by the WSN research community, and is
now found in a number of different low power sensor nodes.

These nodes usually have a form factor that matches the battery size in-
tended to power them. Input and output capabilities are usually limited to a
few LEDs to report software status and a variety of sensors, possibly on an
external, detachable board. Beigl et al. [BKZD04] provide a comprehensive
account of the various sensors in use for various devices and applications.

Made from off-the-shelf components that are simple and cheap, these devices
are a cost-effective platform that is still small enough for many applications,
but is able to carry somewhat more energy and provides enough computational
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Mote CPU Memory Radio Powera Lifetimeb Pricec

Single chip sensor nodes
1. Spec 8-bit 3 KB RAM On-chip 3 mA act. 1933 h

[Hil03] Custom ISA 916 MHz 3 uA idle
2003 4-8 MHz 50-100 kbps

Low power sensor nodes
2. WeC 8-bit 0.5 KB RAM TR1000 18.8 mA act. 131 h

[Hol00] Atmel AVR 8 KB Flash 916 MHz 45.7 uA idle
1998 4 MHz 32 KB ext. Flash 10 kbps

3. Mica 8-bit 4 KB RAM TR1000 18.8 mA act. 166 h $115.00
[HC02] Atmel AVR 128 KB Flash 916 MHz 35.7 uA idle

2001 4 MHz 512 KB ext. Flash 40 kbps
4. Mica2 8-bit 4 KB RAM CC1000 26.63 mA act. 354 h $115.00

[Crob] Atmel AVR 128 KB Flash 916 MHz 15.86 uA idle
2002 7.37 MHz 512 KB ext. Flash 38.4 kbps

5. MicaZ 8-bit 8 KB RAM CC2420 29.83 mA act. 347 h $99.00
[Tec] Atmel AVR 128 KB Flash 802.15.4 16 uA idle

2004 7.37 MHz 512 KB ext. Flash 250 kbps
6. Tmote 16-bit 10 KB RAM CC2420 21.8 mA act. 977 h $78.00

[Mot06] TI MSP430 48 KB Flash 802.15.4 5.1 uA idle
2004 8 MHz 1 MB ext. Flash 250 kbps

High speed sensor nodes
7. Btnode v3 8-bit 4 KB RAM Bluetooth 41 mA act. 40 h $230.00

[BKM+04] Atmel AVR 128 KB Flash / TR 1000 151 uA idle
2003 7.37 MHz 180 KB ext. SRAM 38.4 kbps

8. XYZ 32-bit 32 KB RAM CC2420 72.28 mA act. 181 h $150.00
[LS05] ARM Thumb 256 KB FLASH 802.15.4 30 uA idle

2005 1-58 MHz 256 KB ext. SRAM 250 kbps
9. Sun Spot 32-bit 512 KB RAM CC2420 98 mA act. 160 h $250.00

[Pro09] ARM Thumb 4 MB Flash 802.15.4 33 uA idle
2006 180 MHz 250 kbps

10. Imote 2 32-bit 256 KB RAM CC2420 66 mA act. 16 h $299.00
[Croa] ARM XScale 32 MB Flash 802.15.4 390 uA idle

2006 13-416 MHz 32 MB ext. SDRAM 250 kbps

aValues obtained from device specification if available or data sheets of main components.
Active power taken when radio listening and CPU active.

bCalculated approximate life time when powered at 3.3V by 2 AA batteries of 2900 mAh
each, with duty cycle of 5 % active and 95 % idle power.

cCommercial price as of October 2009 or price at latest selling date.

Table 2.1: WSN devices
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resources to create ad-hoc networks and carry out computations on the sensed
data.

High speed sensor nodes. A third class of devices has been developed, with
faster 32-bit processors and more memory. These devices are also significantly
more expensive and consume more energy. Early devices have been designed
with higher data rate radios, such as Bluetooth [Bha01] (for example Btnode
v3, see table 2.1.7). The availability of low power IEEE 802.15.4-compatible
radio chips has reduced this need.

For tasks that require more computational resources, devices like these might
be an alternative, at the expense of increased energy use. Table 2.1 also gives a
rough indication of the lifetime of all devices. As an example, the lifetime of the
Tmote low power sensor node is roughly 6 times longer than the Sun Spot (see
figure 2.1 c, table 2.1.9) high power sensor node. To achieve similar life time, a
battery pack six times as large may be used, which significantly increases form
factor and price.

These devices provide a good alternative where cost and form factor are not
the crucial limitations, and more computational power is needed than low power
nodes can provide.

Other devices. Besides the device classes mentioned here other devices have
been used and developed for WSN research. First, so-called gateway devices
have been developed that connect a sensor network to the outside world. These
devices are equipped with high speed wired or wireless network connections, are
usually not battery-powered, and have computational resources ranging from
PDA’s [Croc] to desktop or server PC’s.

Next, PDA’s, mobile phones or other commercially available devices have
been used in some research projects [BHS03, ZSLM04] as prototyping platforms.
Results obtained using these devices might not readily translate to actual de-
ployments using low power sensor nodes, however.

2.3 Future developments

Developments in electronics hardware are continual, as history has shown us.
Software in development today will be commercially deployed on the next gen-
eration of computing hardware. It is therefore essential to keep in mind the
characteristics of the next generation of WSN platforms.
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For more than forty years advances in computing hardware has followed an
exponential growth. In 1965, Gordon Moore expressed the observation that

“the complexity for minimum component costs has increased at a
rate of roughly a factor of two per year”

Historical data has shown this trend to be accurate for the last forty years. The
continuation of this trend (at least for the coming 5-10 years1) yields ever faster
devices with more memory for the same price. For WSNs this trend unfolds in
two different directions: Future generations of hardware platforms will be more
powerful than current ones at the same price level. Essentially, for the three
device classes described before, we may expect each class to be equipped with
the CPU speed and memory sizes of the next ‘higher’ device class.

Alternatively, the effects of Moore’s law will fraction the price of WSN plat-
forms for the same performance. This makes wireless sensor networks affordable
in ever greater quantities, which may broaden the applicability of the WSN’s
into ever more areas.

2.3.1 Energy use
The dependency on battery-supplied power makes energy efficiency a major
requirement for WSN platforms. The continuation of Moore’s law also has
consequences for energy consumption of integrated circuits. The advances in
transistor count per chip are realized through miniaturization: subsequent gen-
erations of integrated circuits contain transistors of ever decreasing feature size.
Where the energy use of the subsequent processor generations has continued to
increase, the energy used per transistor has dramatically decreased as a conse-
quence of miniaturization.

Besides reducing per-gate energy use, focus on energy-efficiency in the de-
sign of these chips can have great impact on the total energy used. A variety of
low-power idle modes, a reduction of power mode transition delays, and power-
ing down individual on-chip peripherals can greatly reduce real energy use, by
keeping the device in a low power state for a greater fraction of time.

Again, for the future of WSN platforms the consequences are twofold: on
the one hand devices of same speed and memory size will become more energy-
efficient. On the other hand, for the same energy budget it is feasible to use

1Many predictions have been made when this exponential growth trend will halt, due to
the physical limits of the shrinking feature sizes. It is unclear though whether exponential
growth will cease soon, or new technological advances will keep enable continued growth of
the number of transistors per chip.

17



CHAPTER 2. STATE OF THE ART

higher performance CPUs. Already the trend of reducing energy use of sub-
sequent generations of WSN platforms is apparent in the devices shown in ta-
ble 2.1. In the six years between the WeC (see table 2.1.2) and Tmote (see
table 2.1.6) platforms, energy use has decreased roughly sevenfold (when com-
paring only theoretical energy use calculated from the devices’ data sheets);
furthermore, the more powerful and capacious Sun Spots (table 2.1.9) are less
power-hungry already than the WeC mote of eight years earlier.

Further advances in integrated circuit design and focus on low power has
already decreased total power consumption significantly. Newer devices have
lower idle power consumption (such as the TMote platform, table 2.1.6). This
may reduce even further, since idle power consumption is mostly the result of
current leakage in memory cells. Qin et al. show that with reduced operating
voltages SRAM cell leakage can be reduced up to 90 %.

Future developments will make it possible to decrease active mode power
consumption as well, with as much as three orders of magnitude for low-speed
processors, as Nazhandali et al. show [NMZ+05].

2.3.2 Radio

While WSN CPUs have been getting more energy-efficient, and can be expected
to do so in the future, low power radio chips do not follow this trend. The
wireless transmission of bits over a certain short distance is associated with
intrinsic costs. The transmitted signal has to be powerful enough at the receiver
to be discernible from background noise. The power consumed while listening
for incoming packets may still reduce, however [WSGLA08].

2.3.3 Batteries

The power source used for WSN nodes are batteries. Their capacity, size, weight
and cost are important factors in the usability of wireless sensor network tech-
nology. Powers [Pow95] presents an outlook into the future developments of
battery technology. History has shown an increase in energy density of batter-
ies, partly due to the use of new materials, such as lithium. Progress is, however,
much slower than the rate of progress for electronics circuits, at around 5 % to
10 % increase per year.
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2.3.4 Outlook

Currently developedWSN devices are designed with energy-efficiency as primary
concern. In the future, we may expect such devices to be even more efficient.

The hardware platform of choice in the future may be similar in computa-
tional resources to the current low power sensor nodes for large-scale deploy-
ments, that require minimal cost and energy consumption. Recently, single chip
solutions combining a CPU with radio have become available already, delivering
the computational resources of low power sensor nodes in a form factor of single
chip sensor nodes. For applications that can accept somewhat higher prices,
larger 32-bit devices will provide more computational resources at significantly
lower energy levels than current devices.

The target platforms to consider for the future have resources similar to the
current low power sensor nodes as well as high speed sensor nodes. We will
consider both of these device classes as the target for our software platform
described in Chapter 6. This means that such a software platform must be
designed to cope with the minimal computational resources of Low Power sensor
nodes, while capable of making use of the less limited resources of high speed
nodes if available.

While the energy cost per instruction for computation tasks will reduce dra-
matically, radio-communication involves inherent energy consumption. As a
result, most of the nodes’ energy will be spent on communication, while compu-
tation will be comparatively cheap. For software designers the task of developing
an energy-efficient system will mean primarily to minimize the use of commu-
nication, while a reduction of computation time will have only little effect on
energy use. We will take these observations into account for the design of our
wireless sensor network platform in this dissertation.

2.4 WSN Operating Systems

The hardware platforms we discussed in the previous section require specialized
software to bring about their intended behavior. The memory size and speed
of some of the high speed sensor nodes allows the use of embedded systems
variants of main-stream operating systems, specifically Linux.

The low power sensor nodes, which have our focus, require custom operating
systems that minimize energy consumption and keep memory use and code size
to a minimum, and incorporate design decisions that reflect the central role of
communication in wireless sensor networks. A sizable number of sensor network-
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specific operating systems have emerged as research effort, starting with TinyOS
[HSW+00], which is perhaps the most widely used. Others include Contiki
[DGV04], SOS [HKS+05], Mantis [BCD+05] and BTNut [btn09].

The extremely limited hardware capabilities influenced the design of these
platforms to a great extent. What is commonly called an operating system
for wireless sensor networks and embedded systems in general is essentially a
task scheduling routine and a library of source files containing device drivers to
control peripheral devices.

2.5 Communication

As the sole method for performing data input and output, wireless commu-
nication plays a crucially important role in wireless sensor networks. This is
reflected both in the communication-centric design of WSN operating systems
and platforms and the large body of research on communication protocols for
WSNs and related topics.

WSN platforms communicate at low data rates – at most 250 kbps raw
data rate as table 2.1 shows, and over short distances of at most 30 – 100
meters. For networks that cover large geographic areas, nodes in the network
can communicate to others only when intermediate nodes receive and forward
the messages, possibly across multiple hops. In many static networks nodes
build and maintain a routing tree that is rooted at one or more special gateway
nodes that are connected to a base station – a larger computer, usually a regular
desktop or laptop PC, from which the network is controlled and that receives
the data produced by the network.

Typical WSN deployments have a dense network structure, where a node
can receive from multiple other nodes in its vicinity – its neighbors.

The properties of the wireless medium cause wireless communication to be
quite unreliable. While neighbor nodes may be able to communicate with each
other some of the time, at times packets between neighbors may not be received
without error. Nodes at somewhat greater distances, with which communication
is not possible may, however, cause interference on a node that is listening to
another node that is transmitting at the same time.

The individual network packets are very small – TinyOS uses a default mes-
sage size of only 48 bytes; the maximum size supported by the IEEE 802.15.4
standard is 127 bytes. Short packets increase the likeliness that an entire packet
will be received error-free. Short packets also reduce the time a node is trans-
mitting to a minimum, which conserves energy, and leaves the shared commu-
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nication medium free for other nodes.
The effective transfer rate of an individual sensor node across the network

up to the base station is far lower than the raw data rate, and may be as little
as a few bytes per second. The reason is that the communication medium is
shared between many nodes, and only one can transmit at a time to avoid
interference at the receivers. Using a multi-hop routing tree, messages need to
be transmitted multiple times from hop to hop all the way to the base station.
This low data throughput rate has fueled WSN research into devising protocols
that are efficient, communicating as little as possible. In many cases, only a
subset or summary of the sensed data is required at the base station. Sending
only the required data greatly reduce the data communicated in the network.

2.5.1 Protocols
As is common in network communication, WSN communication protocols are
organized as a stack consisting of a number of layers, each depending on the
layers below it, and providing a communication service to the layer above it.

MAC Protocols. The lowest protocol layer, the Medium Access Control
(MAC) protocol has been intensively researched and many alternatives pro-
posed, specifically for sensor networks. Langendoen has presented a survey
of the many MAC protocols for wireless sensor networks [Lan07]. The MAC
protocol is important for WSN’s because it has a large influence on the en-
ergy efficiency of the network. While nodes are not transmitting or receiving
a packet, it is imperative that nodes put their radio into a low power mode to
conserve energy.

Protocol layers above the MAC protocol serve a number of purposes, from
simple broadcast communication among neighbor nodes to protocols transport-
ing data to the base station, or in the reverse direction, from the base station
into the network.

Protocol Stacks. The use of different stack layers is made very explicit in
the design of the Rime [Dun07] protocol stack for the Contiki [DGV04] WSN
operating system. The Rime protocols implement various kinds of protocols
such as single-hop reliable unicast and multi-hop reliable bulk data transfer.
The different stack layers are individually selectable for use by the application
developer, and make use of each other to provide their communication services.

For the TinyOS WSN operating system, a similar set of communication pro-
tocols exists, as Madden et al. describe [LMG+04]. The authors discuss different
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communication services, such as single hop communication, various multi-hop
communication services such as tree-based routing, intra-network routing and
broadcast and epidemic protocols.

Routing Protocols. A number of distinct classes of network protocols has
been proposed in research. Routing protocols form one of these classes. Akkaya
and Younis [AY05] review and classify many of them. Routing protocols make
sure that network packets destined for nodes that may be reachable only through
several intermediate hops reach their destination. Intermediate nodes may de-
cide where to forward the message using one of several methods: using a con-
tinuously maintained routing tree, by broadcasting the network to query for a
path between source and destination, or using location information of the nodes
in the network.

One routing protocol is of particular importance to this work, as we will
make use of them and evaluate them in later chapters. This protocol is the
Mint (from Minimum transmission) protocol distributed with the TinyOS 1.x
source code [HSW+00], and its successor Collection Tree Protocol or CTP for
TinyOS 2.x. Mohan et al. evaluate and compare the Mint protocol extensively
[MnWHG+05]. The aim of these protocols is to construct a routing tree rooted
at a node chosen by the application. To achieve this, every node in the network
chooses a parent node from its neighbor nodes. The choice is based on the
reliability of the communication link to the chosen neighbor such a way that
data transmission to the root via the chosen neighbor will result in the shortest
and most reliable end-to-end path. All nodes maintain a list of their neighbors
and perform regular link quality measurements on which they base their choice
for parent.

Transport Protocols Another important class of WSN communication are
transport protocols. Wang et al. present a survey of a number of such protocols
[WDLS06]. Transport protocols ensure reliable delivery of messages, and aim
to minimize congestion in the network.

One of the transmission protocols reviewed by Wang et al. is the Trickle
protocol. Trickle tries to update every node in a network with the latest version
of some piece of data, for example some piece of configuration data or variable
value. In case an update is made to the data, one of the nodes receives the
update. Each node periodically advertises its data version, and if a neighbor
possesses a newer version, it is requested to transmit it to all neighbors still
holding expired versions. In turn, these nodes advertise their newly obtained
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data version, and will further propagate the new code. Given some time the
whole network will be updated with the latest version of the data, without
explicitly transmitting the code to any of them.

2.5.2 Communication abstractions

The communication protocols described above are a means of transferring indi-
vidual packets – fixed-sized sequences of bytes – between a sender and receiver.
Many sensor network programs require a different mode of communication, for
which a number of communication abstractions have been proposed. This in-
cludes a number of works concerned with neighborhood interactions such as
Hood [WSBC04], abstract regions [WM04] and logical neighborhoods [MP06].
These works make use of the observation that the decentralized computations
performed by sensor nodes involve data from each node’s neighborhood: a collec-
tion of other nodes that are reachable through direct communication or through
a small number of hops. All nodes in the network make available some data –
usually obtained from sensors – to the nodes in its neighborhood.

Communication may take place in the form of shared memory primitives,
where nodes read and write shared variables, or by regular updates that are
disseminated to all neighborhood members at constant intervals.

These neighborhood abstractions use a higher level of abstraction where they
communicate not packets containing byte sequences of unknown content (to the
communication layer), Instead they communicate values of a particular data
type known at compile time, usually originating from sensors.

Typically, these neighborhood abstractions include functionality to efficiently
perform calculations on these sensor values using explicit iteration over all neigh-
bors’ values, or implicitly though the use of the reduction strategy which calls a
reduction function on all of the neighbors’ values to obtain the sum, mean, or
min/maximum.

In these systems the shared values are either of scalar type or flat structure
types only, so as to fit inside a single packet. Exchange of multiple values or
larger data sets is done through multiple read or write operations only, at the
expense of communicating multiple packets.

2.6 Programming models

Wireless sensor networks are a new computing platform and as such receives
much research attention trying to investigate what are appropriate methods to
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design and program this new platform.
The contributions of this are in various topics related to programming mod-

els and methods for sensor networks. In this section we mention the main topics
investigated by the research community and point to some of the work in these
areas. Subsequent chapters will discuss the topics mentioned here more thor-
oughly.

2.6.1 Multi-threading

The little available memory in low power sensor nodes makes supporting multi-
threaded applications somewhat problematic, due to the memory required for
threads and their runtime stacks. The availability of multi-threading can ease
application development, however.

The BTnut [btn09] and MANTIS [BCD+05] operating systems both sup-
port multithreading. TinyThread [MS06] is a thread library for TinyOS. With
these systems, each thread requires its own stack. Y-threads [NPR06] and
Fibers [WM04] are a more limited and memory-efficient method. Y-threads
uses separate stacks for pre-emptable tasks, but uses a shared stack for Run-to-
Completion Routines invoked from the tasks. Fibers allows for a single blocking
I/O context only. Switching out of the blocking call requires only saving the
register set to memory, and restoring it when switching back. ProtoThreads
[DSVA06], part of the Contiki [DGV04] OS is the simplest solution to adding
thread support. ProtoThreads aims to remove the split-phase nature of an
application’s main loop by using a combination of C macro’s.

This work makes contributions in the area of multi-threading and concur-
rency, and a more in-depth analysis is presented in Chapter 5.

2.6.2 Wireless reprogramming

Most WSN operating systems (including TinyOS, Contiki, BTNut, and MAN-
TIS) are programmed with a statically compiled code image. Nevertheless, a
number of research projects have attempted to enable loading of applications
or modules. Reprogramming the devices using the wireless link requires coop-
eration from the operating system to receive the new program, install it on the
node and execute it. Additionally, the new program needs to be transmitted to
the node using a suitable communication protocol.

The different methods of wireless reprogramming described in the literature
concern the executable format of the new program. Chapter 4 extensively dis-
cusses their exact differences and benefits. In this section we will just mention

24



2.6. PROGRAMMING MODELS

a number of works that target wireless reprogramming for WSN platforms.
One of the first reprogramming works is XNP [Cro03] for TinyOS. It is able

to wirelessly reprogram nodes that are in direct wireless connection with a base
station. Deluge [HC04] and MNP [KW05] are later improvements that transport
program images over multiple hops to the entire network.

Some works have aimed to reduce communication while transmitting new
program images by updating the current program with the differences compared
to the new version. A number of different methods have been published, similar
to the Unix ‘diff’ utility [RL03], based on the RSYNC protocol [JC04], or other
differential methods, such as MOAP [SHE03] and FlexCup [MGL+06].

Some WSN operating systems support loading of modules into a static ker-
nel, which facilitates loading and updating applications on the devices. This goal
was the primary motivator for the development of SOS [HKS+05]. Similarly,
MANTIS [BCD+05] allows loading of program modules. Contiki [DFEV06]
supports run-time loading of standard ELF files. The differential transmission
method FlexCup [MGL+06] transports modules for the TinyOS-based system
tinyCubus [MLM+05].

Virtual machines and interpreters for WSN platforms facilitate wirelessly
loading programs onto nodes as well. Maté is the first virtual machine developed
for wireless sensor networks. Agilla [FRL05] is a modification of the Maté VM
that uses mobile agents as a means of program transport and communication.
Similarly, ActorNet [KSMA06] is an agent-based platform for WSNs that uses
the Scheme programming language to program agents. SensorWare [BHS03] is
similar mobile agent-based system. Its mobile agents are programmed in the
programming language TCL. Sun provides the SPOTs [Pro09] WSN platform
that is programmed with the Java language, and contains a Java VM [LY99].
The JavaVM’s high memory and computational resource requirements are re-
flected in the design of the Sun SPOT platform (see table 2.1.9). More recently,
however, the Perk [Cor08] and Darjeeling [BLC09] virtual machines have man-
aged to put a JavaVM onto low power sensor nodes. Contiki contains the SCript
scripting language that can be used to load and interpret small scripts on nodes.

2.6.3 Macro-programming

One research direction taken aims to allow an application designer to program
the network as a whole, instead of the individual devices separately. Many
variations of this macro-programming model have been developed.

Macro-programming platforms typically use a high-level programming lan-
guage to specify in-network computations. Communication is not explicit, but
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happens ‘under the hood’ as part of the execution of language-specific con-
structs. As an example, the Regiment [NW04] platform uses a lazy functional
programming paradigm derived from the Haskell programming language, and
incorporate the abstract regions neighborhood communication library, using re-
gions as a fist class language element. Operations on regions cause communica-
tion between nodes in a region.

Kairos [GKGM05] and its successor Pleiades [KGMG07] add some abstrac-
tions to imperative base languages Python resp. C: reading and writing vari-
ables at nodes (using a variable@node syntax) and iterating through the one-hop
neighbors of a node (using a cfor language construct), and automatic program
partitioning and migration for minimizing energy consumption.

The use of a non-imperative high-level language with language support for
sets of uniform data and streaming execution has been proposed in a variety of
ways: Flask [MMWN07], SOSNA [KC08] and – as mentioned already – Regi-
ment [NW04, NMW07], uses lazy streams inspired by the Haskell programming
languages to perform computations on streams of sensor values.

Logic-based declarative languages, derived from Prolog have been proposed
in several instances as well for Cooperative Artefacts [SGKK04, SKGK04], and
as part of Semantic Streams [WZL06].

Besides writing high-level programs for homogeneous networks, where every
node has the same task and receives the same program, macro-programming
has also been applied to heterogeneous networks, where every node is associated
with a specific task. RuleCaster [BK06], snBench and Abstract Task Graph
[BPRL05] all use a declarative language to define the behavior of the network,
which is then compiled into separate programs for each individual node. Again,
communication is implicit in these macro-programs. The role of the compil-
ers for these systems is to split the network-wide behavior into node-specific
programs in such a way that total communication is minimized.

Chapter 8 presents our contribution in the area of macro-programming.

2.6.4 Distributed database view

Finally, a class of sensor network platforms uses a programming model where the
sensor network is viewed as a distributed database of sensor values. This model
of the network is strongly coupled with the environmental monitoring class of
applications described in Section 2.1.2. in this model, the network produces a
regular stream of sensor values that are aggregated with some operation, and
forwarded to the base station through a routing tree as described in Section
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2.5.1. A wide variety of implementations of this programming model exists,
such as Cougar [BGS01], TinyDB [MFHW03] and SwissQM [MAK07].

We will use the distributed database view programming model in one of the
application scenarios in Chapter 3.

2.7 Outlook
This chapter reviewed the research performed in the field of wireless sensor net-
works. First we have described WSN hardware platforms and current and poten-
tial applications that make use of these platforms. Subsequently we reviewed the
contributions on software platforms, systems and languages for WSNs. While
each of these works contribute to advance the state of the art on wireless sensor
networks, due to software and hardware incompatibilities and resource con-
straints these individual works cannot be combined into a comprehensive soft-
ware platform capable of addressing a multitude of WSN applications.

This dissertation describes the design of a WSN platform designed to host a
wide range of WSN applications, taking into account the tools and techniques
described in this chapter and the resource restrictions of current WSN hardware
platforms. We use a set of representative application scenario’s (Chapter 3) from
which we derive design requirements (Chapter 4) for the SensorScheme platform
described in Chapters 5 – 8. Finally we use the application scenarios to evaluate
the performance and effectiveness of the SensorScheme platform in Chapter 9.
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Chapter 3

Scenarios

This chapter defines four concrete wireless sensor network application scenarios.
We will use these scenarios to define the requirements for the SensorScheme
software platform (described in Chapter 4), and evaluate our platforms with
the use of these scenarios (in Chapter 9).

Next, this chapter analyzes the common requirements for implementing these
applications on a WSN platform and discusses design alternatives that may be
used to implement these requirements. Using the conclusions from this analy-
sis, Chapter 4 will further discuss the design tradeoffs made to create a WSN
platform to run all of the application scenarios described in this chapter.

The set of applications we consider is diverse: from simple applications used
merely as proof of concept to complex dynamic applications using a heteroge-
neous collection of devices. These applications, however, each represent a larger
class of WSN applications, some of which have been identified in Section 2.1,
and with a wide variety of requirements to the WSN software platform. We
intend for these example application scenario’s to be a representative set of ap-
plications for the entire WSN application spectrum and as such present a broad
range of WSN platform design issues, and guide us towards solutions.

3.1 Intruder detection

One of the most cited applications for wireless sensor networks is battlefield
monitoring, also known as intruder detection or the pursuer evader game (PEG).
Section 2.1.1 already mentioned it. This application is used in a large body of
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research as a proof-of-concept example. We also include this application here
for the same reason.

For the intruder detection application, a sensor network is spread out in a
large outdoor area, that needs to be watched for intruding vehicles. All the
nodes know their own location as a set of x- and y-coordinates. The sensor
nodes are equipped with sensors that can sense the nearby presence of vehicles.
We assume the use of a magnetometer, that produces sensor readings that are
proportional to the distance from a sensed vehicle.

All sensor nodes periodically read out their magnetometer. If the reading is
greater than a certain noise threshold, we assume a vehicle has been detected.
All nodes in the vicinity of the vehicle will then transfer their sensor readings
and location coordinates to each other, and one of them can calculate the esti-
mated position of the vehicle as the centroid of all the measurements, using the
magnetometer readings as weights.

Other work proposing implementations for this application use only each
node’s direct neighbors to gather sensor readings from. In our scenario nodes
gather sensor data from their two–hop neighborhood (that is, a node’s neighbors
and its neighbors’ neighbors).

For the transfer of sensor readings within the network, we use a gossip pro-
tocol to periodically have nodes broadcast their sensor data and location, and
receive data from their neighbors. In every subsequent period, nodes broadcast
all data received from its neighbors alongside their own new sensor data, and
receive all second–hop–neighbor data sent by neighbors. Every period, one of
the nodes calculates the vehicle’s location using all first and second hop data
received. The calculated location is then sent to a base station outside the
network, from where it can be used to visually locate and approach the vehicle.

3.2 Environmental monitoring

Another application of wireless sensor networking technology is to monitor en-
vironmental conditions of the deployed area of the sensor network. In some
situations the sensor data is not needed in raw, unprocessed form, but only
summary information calculated from the readings. These calculations can take
place on the nodes in the network as the data is transported to the base sta-
tion. Calculating summary information in the network reduces the total data
transmitted, making the network more energy-efficient and scalable.

Previous research has adopted a view of the sensor network as analogous to
a real-time database and request data from it by way of queries – programmatic
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expressions of the operations to perform on the data as it travels through the
network. This application scenario displays the capabilities of a WSN platform
to dynamically change or extend the application’s functionality through the
use of a query language as a restricted (ie. not Turing-complete) programming
language. The restrictions posed upon the query language are motivated by the
application domain as well as the hardware and software restrictions o the WSN
platform in use.

Subsequent implementations of this scenario in the state of the art show
a gradual progression towards increased expressiveness of the query language,
ranging from Cougar [BGS01] to TAG [MFHW02] and TinyDB [MFHW03], and
used as an example application to demonstrate the use of application specific
virtual machines in the form of QueryVM [LGC04] and the SwissQM [MAK07]
virtual machine.

In analogy to the database query language SQL, the tinyDB query platform
uses queries written in a special query language, tinySQL. Other systems use
different query languages of similar nature. Queries can be dynamically loaded
into the sensor network devices, and in most implementations, the network can
process multiple queries simultaneously.

WSN querying applications consist of a number of parts: All nodes in the
network sense the environment using their sensors. The sensor data is then sent
to a data sink across a previously set up and continuously maintained routing
tree. At each intermediate branch in the tree, a summary is calculated from the
data from higher up in the tree. The summary data is then forwarded further
on to the tree, all the way until the root at the base station.

We use this database abstraction as an application scenario to monitor the
soil moisture in a crop field. We use an (imaginary) rectangular field of 2
hectares in size that contains 800 sensor nodes in a 5× 5 m grid formation. We
monitor the field with course-grain summary values of each of the eight 50× 50
m sub-areas.

3.2.1 Overview query

Every 5 minutes we request the minimum, maximum and average soil moisture
values of each of the sub-areas, which are stored into a database. We call this
the overview query. As a tinySQL query this can be expressed as

SELECT min(moist), max(moist), avg(moist) FROM sensors
2 GROUP BY x / 10 + y / 10 * 4

SAMPLE PERIOD 5m
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We assume here that the x and y coordinates are given in meters with (0, 0) in
one of the corners of the field and axes parallel to the field sides, and / is the
integer division operator.

While stated using tinySQL syntax, the overview query does not conform to
the TinyDB query requirements due to the complexity of the GROUP BY clause.
In fact none of the platforms in the state of the art mentioned implementations
allow for queries of this complexity. Chapter 5 shows how SensorScheme is able
to execute this query, however.

3.2.2 Anomaly query

When anomalies are detected in the reported values of any of the eight sub-
areas, a new query is sent into the network that senses the 100 individual sensor
nodes in the anomalous sub-area for two hours. We can express this anomaly
query as the following tinySQL query:

SELECT nodeid, moist FROM sensors
2 WHERE x / 10 + y / 10 * 4 = 6

SAMPLE PERIOD 30s
4 DURATION 2h

We can group the computations of both the overview and anomaly queries
into two parts: 1) generate data, by reading from sensors or other data sources
(such as the constant coordinates), but only when the conditions in the WHERE

clause are met; 2) aggregate received data, producing intermediate averages and
grouping them by values produced in the GROUP BY clause. Additionally, the kind
of aggregates that can be calculated are those for which the order of calculation
and location (on which node does it take place) is irrelevant. Aggregations
should therefore be limited to pure (without side-effects) commutative functions.

3.3 Tracing and monitoring in logistics

Besides the well-studied WSN applications for environmental monitoring, wire-
less sensor networks have the potential to make a great impact in the supply
chain management business. WSN nodes can be attached to crates, roll con-
tainers, pallets, and shipping containers to actively track the transportation pro-
cess. During transport the devices verify proper handling conditions of goods
like temperature for fresh foods, and can detect correct placement in trucks or
containers, and raise an alert otherwise. Actively monitoring every transported
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Figure 3.1: State diagram of the transportation process

item in this way can significantly reduce delivery delays and loss or theft of
goods, which cause a significant loss of revenue.

This application scenario was first used in previous publications ([EHK07a],
[EHK07c], [EHK+07d]), on which this dissertation is based. In this work we
have extended the application scenario and provide a full implementation in
Chapter 5.

In this application scenario we track a shipment of bananas as it travels from
the farm near Rio de Janeiro to a supermarket distribution center in Rotterdam.
The bananas are packed in boxes stacked onto pallets, each equipped with a
WSN node tracking its every move. From the farm, these pallets travel in
trucks to a loading dock at the harbor, where they are loaded into shipping
containers that carry them all the way to the supermarket chain’s distribution
center. During the whole trip, the bananas need to be kept cool, between 10
and 15 degrees Celsius, and away from sources of ethylene gas, such as fresh
coffee beans, that adversely influence the ripening process.

Figure 3.1 shows a state diagram of the stages and transitions that these
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pallets will go through during the transportation process from the farm to the
distribution center, which we’ll call a journey.

While a pallet is waiting at the farm to be loaded into the truck it tries to
verify whether it is positioned correctly, near other pallets that are to be loaded
into the same truck. It does this by comparing its destination and contents
with (the majority of) peer nodes on other pallets nearby. When a pallet is not
positioned correctly or no peer nodes are found, it should raise an alert.

Next, the pallets are loaded into the truck transporting them to the harbor.
Nodes can detect being loaded by ‘hearing’ another device, placed inside the
truck, at which point they’ll make the transition to stage 2. This device in the
truck is programmed with its own itinerary, containing data about its identity,
as well as the goods it is to be transporting. When in the truck, each pallet
device requests from the truck device the company and truck IDs and records
these into the log file.

While in the truck, pallet nodes do not have to verify anything, since no
change in state will take place until they are taken out. They do have to detect
being taken out of the truck, however, which can be concluded from absence
of the truck, and presence of the wireless infrastructure (access point) of the
harbor loading dock.

When unloaded on the dock, the sensor nodes again verify whether they
are positioned correctly to be reloaded into shipping containers. The dock is
equipped with electronic infrastructure capable of tracking each pallet’s location,
and based on this, each pallet verifies whether it is at the correct position.
When placed incorrectly, it can directly send an alert message to the dock
infrastructure that will inform workers to correct it.

For the last stage of the transport, the pallets are loaded into containers.
These can be recognized by a matching shipping ID programmed into each
container. Finally, when the container arrives in the distribution center, pallet
nodes sense the distribution center access point and make the state transition.

3.4 Control of smart office spaces

Our last application scenario concerns a building control system for flexible
offices. The system ensures energy preservation, while being hassle-free to use
for office workers, and low maintenance for building managers.

This application scenario was previously published [EK09]. In this work
we report on the integration of the work published previously with the Sensor-
Scheme platform in Chapter 8.

34



3.4. CONTROL OF SMART OFFICE SPACES

4006 4010 4016 4022 4032 4034

4014 401 8 402 6 403 0

4001 4003 4005 4007 4009 4011 4013 4015
4000

4038

light switch
IR detector
temperature sensor
window open detector
light controller
radiator controller

Figure 3.2: Floor plan for use in the scenario

Office rooms are fitted with a number of sensors and actuators that together
control heating and ventilation, and switch lights. Figure 3.2 shows a floor plan
of one of the floors of the University of Twente Computer Science building, with
the positions of the various sensor and actuator devices shown. First, the ceiling-
mounted lights in every room can be controlled with a wirelessly transmitting
light switch device, usually placed near the room entrance. All lamps in the
room contain a wireless receiver device that switches the lights on and off.

Furthermore, each room contains one or more central heating radiators,
equipped with a controller device that controls the radiator valve. Rooms are
fitted with several temperature sensors that together deliver a per-room average
temperature. The desired temperature per room can be set, using a thermostat
device in the room, which, using the room’s average temperature, controls the
radiator device.

When opening a window the radiators in the same room should be turned
off, to preserve energy. To that effect, each window has a window open sensor
attached. For additional energy preservation, presence detectors in every room
monitor whether rooms are occupied, and if not, turn off the lights and heating.

Together, these devices make up a wireless sensor and actuator network.
While the operation of every individual device is simple – a light switch only
needs to send a message to the light controllers in the same room – configuration
by hand of such a large network would be a complex and time consuming task:
every individual device needs to be programmed with the identifiers of other
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devices it connects to. Changes to the configuration, for example when splitting
a room or merging several rooms into a single large one, may involve multiple
devices, that all need reconfiguration.

3.5 Requirements

Our aim is to define a software platform that is usable for all four of the described
application scenarios, and – by extension – other WSN applications. This section
derives the requirements for the platform posed by the application scenarios in
this chapter.

3.5.1 Dynamic program loading

The most important requirement for our application scenarios is the ability to
program and reprogram the devices after deployment, by transferring the packet
across the wireless network. The different scenarios all rely on reprogramming
in a unique way:

Intruder detection
While the intruder detection scenario does not specifically require the
nodes to be reprogrammed while the application is operational, deploying
a sensor network and developing the program may be more cost efficient
when the application can be loaded after the network is deployed, and
modified and reloaded of necessary.

Environmental monitoring
The environmental monitoring application requires to run a number of dif-
ferent sensor data queries simultaneously. When anomalous readings are
encountered, a new query is sent into the network to gather more precise
readings. The individual queries can be viewed as a kind of application,
that needs to be programmed at the request of the user.

Logistics
The logistics scenario is in need for wireless reprogramming: for every
shipment the appropriate parameters need to be programmed: the source,
destination, and intermediate locations, content of the shipment and con-
ditions that need to be guarded. Devices need to be reprogrammed for
every subsequent transport, so reprogramming will occur frequently.

36



3.5. REQUIREMENTS

Smart office
The smart office network may operate uninterrupted and without repro-
graming during normal operation. When changes in the configuration
occur, however, every device needs to be configured to properly connect
to the other devices with which it needs to interact.

3.5.2 Dependent requirements
We have argued above that all four of our scenarios are in need of dynamic
loading of their programs. As the state of the art indicates, there are several
methods of achieving this, each with different properties and suggesting different
uses. We now continue to analyze the applications’ requirements for a program
loading facility more closely.

Protection
Wirelessly loading a program onto the sensor nodes introduces a number of
risks that nodes need to be protected from. Loaded programs may cause
a node to be no longer accessible from the network. Such misbehaving
programs can be created by developers making accidental mistakes – create
bugs, or intentional – malicious programs such as computer viruses that
have the purpose of gaining access to a device or damaging it.

This can be prevented by shielding application developers from the bare
hardware resources such as peripheral devices and allowing access to only
those memory regions in use by the application.

To our application scenarios protection is a crucial issue. For the lo-
gistics and smart office scenarios the users of the devices that need to
program them may not be the owners of the hardware. The functionality
that may be reprogrammed should thus be restricted to only application
tasks. Hardware access and networking functions should not be repro-
grammable to ensure the devices remain usable and wirelessly accessible.
To a lesser extent, the environmental monitoring and intruder detection
scenarios benefit from protection, as it protects the users from writing
programs containing bugs that make the devices unusable.

Platform independence
Already a variety of WSN hardware platforms have been developed and
more may be expected in the future. A software platform that supports
to load applications on a variety of devices and let them cooperate in a
single network will make sensor networks more usable. This is relevant

37



CHAPTER 3. SCENARIOS

especially for the smart office and logistics scenarios where devices from
different manufacturers and multiple generations of hardware platforms
need to cooperate. Similarly, for intruder detection and environmental
monitoring, adding later generations of devices to the network at a later
moment may be desirable.

Current devices differ in the CPUs in use, the amount of memory available,
the wireless network interface and the peripheral devices such as sensors
and actuators. Hardware independent software platforms must be able
to execute a loaded program on each of those CPU architectures, use all
the available memory, be independent of the hardware-specific networking
protocols, and make use of the peripheral devices available.

Small program size
As argued above, the application functionality should be loadable on all
devices of the network, and delivered through the wireless network. To be
able to do this efficiently and with minimal energy consumption, it is im-
portant that the size of the program transported over the network is small.
In wireless sensor networks communication is a limited resource, because
the devices have low bit-rate radio’s and the wireless medium is shared by
a large number of devices. For example, the Deluge dissemination protocol
[HC04] reports effective data rates of less than 90 bytes per second when
disseminating data into all nodes of the network. The difference between
applications of several hundreds of bytes and tens of thousands of bytes
– the typical size of WSN binary images – is the difference between pro-
gramming time of several seconds vs minutes. Energy use is also affected
by the size of programs, as communication is responsible for the majority
of energy consumed in WSN nodes.

3.5.3 Programming models

Independent of dynamic program loading ability, there is a large body of research
into investigating programming models for sensor networks to ease the task of
writing WSN applications. In the literature a number of methods have been
proposed and analyzed, as described in Section 2.6.

Functional programming
A number of works propose the use of the functional programming para-
digm. Regiment [NW04] is a lazy functional language akin to Haskell
[Jon03]. Flask [MMWN07] is based on OCaml [OCa], and they share the
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vision to regard sensor data as a stream of data on which to apply pure
functions. The functional programming paradigm also naturally supports
aggregation of sensor values through the use of the reduction strategy.

Multi-threading
WSN operating systems are designed without support for multi-threading
as a means to preserve memory. When using I/O operations, though, such
as sending a network packet, the availability of multi-threading enhances
programmability.

Communication
A significant part of WSN program’s functionality revolves around com-
munication. Programs may need to send and receive messages of various
sizes and content. Certain tasks may require transmission of payload with
variable size or structure, such as forwarding all data received from direct
neighbors in the two-hop gossip protocol used for the intruder detection
scenario, or the query results in the environmental monitoring scenario.
The total message payload in such cases may exceed the size of a single
packet, requiring some mechanism to split a single message into multiple
packets, an recombine them upon arrival. Providing powerful communi-
cation abstractions simplifies construction of sensor network applications,
reduces program size and enables construction of complex but efficient
communication protocols.

Macro-programming
A research direction that has received attention in particular is macro-
programming, to use a single program to specify the collective behavior
of the entire sensor network. The state of the art (Section 2.6.3) proposes
several macro-programming methods.

These programing tools and abstractions all have the goal of reducing the
effort to build WSN applications. Tools and abstractions that are a natural
fit to a particular application domain facilitate in creating short programs that
reduce the chances for programming errors – bugs – and reduce development
time. Shorter programs also benefit the resource-scarcity of sensor nodes, as we
have argued above.
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3.6 Conclusion
In this chapter we have defined a set of application scenarios that capture the
broad area of uses for wireless sensor network technology. From these application
scenarios we have derived a number of requirements for a software platform to
implement them.

The following chapters will discuss the design tradeoffs for achieving these
requirements on low power sensor nodes, the design and implementation of
our platform, SensorScheme, and implementations of the scenarios using the
SensorScheme platform.
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Design tradeoffs

The previous chapter has described four application scenarios for wireless sensor
networks, and identified a number of requirements posed to a software platform
on which to implement these applications. This chapter identifies the design
tradeoffs for achieving these requirements.

We have identified two main requirements that are necessary for building
these applications, but are challenging to build given the resource-restricted de-
vices in use. In particular, wireless reprogramming is a challenging task resulting
from the memory organization of sensor nodes: severely limited working mem-
ory (RAM), significantly smaller than program flash memory. Subsequently, low
data rate radio’s and dense networks result in slow transfer speeds of programs
into the network.

Additionally, effectively building sensor network programs to load onto the
network requires abstractions that may themselves be costly to implement, as
they require significant amounts of working memory. Effective platform de-
sign involves decisions on what techniques and abstractions to use, and how to
allocate memory for each, to keep memory use within limits.

In the design of any wireless sensor network software platform certain deci-
sions have to be made trading off functional and nonfunctional aspects. func-
tional aspects like program execution speed and memory available for allocation
by applications are off-set with non-functional properties like peripheral and
memory protection, and the risk of failing applications due to memory fragmen-
tation.
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4.1 Operating Systems

Before we set out to discuss the tradeoffs involved in the design of the Sensor-
Scheme platform, this section first lays out some of the characteristics of wireless
sensor network operating systems. This will help us identify the problems and
opportunities we describe in the subsequent sections.

In Chapter 2 we have discussed some of the operating systems developed
especially for wireless sensor networks. The design of these differs considerably
from desktop and server operating systems. The operating system represents
the core functionality of a computer, managing use of and access to the compu-
tational resources – CPU time and memory – and peripherals.

4.1.1 Desktop operating systems

On desktop and server class devices, when the computer starts up, it loads a
kernel image that is in control of special protection and memory management
hardware in desktop and server processors. The kernel can load user applica-
tions, each in a private address space, effectively shielding off individual applica-
tions from each other’s memory. When an application wants to access peripheral
devices to read or write files on disk, communicate over the network, or display
information on the screen, it requests to perform the particular operation to the
kernel, which will execute it if permitted.

This separation between applications and the kernel is attractive because it
allows the computer to load programs that may not be entirely trustworthy or
error-free. All user applications have a private address space and are not capable
of reading or writing any memory besides their own. When an application tries
to access memory that it has not allocated, the kernel and other applications
are not affected, and continue to operate normally.

Similarly, because the kernel controls access to peripheral devices, it can
impose restrictions on its use. This prevents programs without the proper cre-
dentials to cause harm by improper use of peripherals, such as deleting data
off the hard disk, crash or reboot a computer, or any kind of other unwanted
behavior.

4.1.2 WSN operating systems

In comparison, embedded systems contain a single kernel image containing both
operating system functionality and user application. The benefit of this ap-
proach to embedded systems is that the kernel image may be smaller and using
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less memory, since only those parts of the kernel and device drivers that are ac-
tually used by the application need to be in the kernel image. In addition, the
simpler processors in use in WSN hardware platforms do not contain memory
management and protection functionality and process isolation as provided by
desktop operating systems is therefore impossible.

4.2 Memory allocation
Applications allocate memory in a variety of methods:

Global
Variables can be reserved as global memory, which makes it available to
all parts of the application for the entire duration of the application. The
compiler will allocate a memory region for these variables at a fixed ad-
dress. In WSN operating systems, global variables are allocated at a fixed
location in memory and cannot change in size. If the globally allocated
data is not actually used it will still consume a fixed amount of memory.

Local
For variables local to individual functions, memory needs to be reserved
only for the duration that the function is executing. These variables are
assigned memory on the stack. Since a function f can call another function
g that will execute within the execution time of function f, the stack has a
last-in-first-out structure. The compiler makes sure that functions allocate
and release their local variables on the stack automatically.

Dynamic
The third method of memory allocation is dynamic allocation. Dynam-
ically allocated memory reserves contiguous chunks of memory from the
heap. Using dynamic allocation programs need to explicitly allocate mem-
ory, and deallocate it later when no longer needed. Dynamically allocated
memory can be used in several ways:

• When a value needs to be available for longer than the duration of
a function. A common use is for values that functions return to the
caller.

• To allocate multiple instances of a data structure when the number
of instances is not known at compile time. WSN nodes may need to
keep multiple messages in memory, for reasons of caching or while
forwarding received messages to other nodes.
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• To allocate arrays, the size of which is not known at compile time or
will change over time. Many WSN applications need use an array to
record data about neighbors the number of which varies over time.
When the number of items in the array changes, the array size may
need to change by reallocating a differently-sized array and copying
the old contents.

While some WSN operating systems do make use of heap-stored dynamic
memory allocation, its use is not common. Two of the most widely used oper-
ating systems, TinyOS and Contiki do not make use of it. One of the reasons
(as stated by Gay et al. [GLvB+03]) is that the small heaps used (just a few
KB) are in risk of heap fragmentation.

4.2.1 Fragmentation

Memory fragmentation occurs in long-running programs (such as used in WSNs)
when allocated memory regions end up being separated by many small unused
memory regions. The problem in this situation is that it may become impossible
to allocate memory, even though there may still be sufficient unused memory;
the unused memory is not contiguous, but spread over many small regions, none
of which is large enough to allocate the currently requested size.

In wireless sensor network platforms this may easily prevent large objects
like packet buffers to be allocated. Packet buffers are relatively large memory
objects, of approximately 100 bytes. In a heap of 4 KB, unfortunate placement of
as little as 40 other objects may prevent any packet buffer from being allocated.
Most of the heap may still be free in regions of less than 100 bytes. Such a
situation may prevent a sensor node from sending or receiving any packets.

4.2.2 Non-fragmenting heap

An alternative method of dynamic memory allocation without fragmentation is
used by Contiki: Allocated blocks of memory are moved to a different location
in the heap when necessary to keep a single contiguous block of free memory.
Unfortunately, when the heap-allocated block moves, pointers to the block in
use by the application do not move. This technique can be made usable by using
double indirection pointers: heap block pointers used by applications all point
to a fixed-size heap-pointer data structure containing a pointer to the actual
location of the memory block. When the block is moved, only the pointer in the
heap-pointer needs to be modified to point to the new location. Applications
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using this method always need to perform a double pointer indirection to access
the memory block.

This method effectively solves heap fragmentation at the expense of increased
computation time due to double indirection and heap reorganization, and in-
creased memory use due to storage of an extra pointer per heap block. The
Contiki implementation uses heap-pointers of 6 bytes of size. Especially when
large numbers of small objects need to be allocated, allocation of these six ad-
ditional bytes may not be desirable.

4.2.3 Pool allocation

For long-running WSN applications fragmentation is a real risk that can be
avoided by using only a more restricted form of memory allocation, which we
will refer to as pool allocation. For data types of which multiple instances may
be needed, such as packet buffers or neighbor information structures, arrays
of multiple such objects are statically reserved in global memory. Programs
can allocate multiple objects of a particular type from a pool, and need to
explicitly deallocate each object. For every data type which requires allocation
of multiple instances, a separate pool is reserved. The TinyOS and Contiki
WSN OSes provide the Pool interface resp. memory blocks library.

While pool allocation precludes the occurrence of fragmentation and allows
for a limited form of dynamic memory allocation, it does not serve every appli-
cation need for dynamic allocation.

Applications may be using multiple pools, for different data types. The
size of every pool needs to be determined at compile time, depending on the
expected use of the associated data type. Pools of too large size waste memory,
while too small sizes may harm application performance.

Additionally, when allocating arrays of sizes unknown at compile time (the
third kind of dynamic allocation described above), pool allocation of fixed-sized
objects presents no real solution.

4.3 Reprogramming

There are different methods of realizing reprogrammability, but not all of them
are equally suitable for the purposes of the example applications that we target.
This section discusses in detail the properties of several methods proposed in
the literature and analyzes their applicability.
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4.3.1 Whole image reprogramming

The simplest method to wirelessly reprogram sensor nodes is by replacing the
current code image with a new one that is received over the wireless medium.

Procedure

Whereas embedded micro-controllers used in current WSN platforms have built-
in facilities to reprogram them using a serial or USB connection to a desktop or
laptop computer, wireless reprogramming requires software assistance.

First, the node must be able to receive network packets that contain parts of
the new image. The node must store these parts in some kind of intermediate
storage until the entire image is received. As internal RAM is not sufficient to
hold a code image in these devices, an external RAM or Flash chip is used as
intermediate storage. After the entire image is received, the node can replace the
current code image in internal Flash by the received image. During this process
no other tasks can be performed. Finally, when the code image is replaced
the nodes can reboot itself, and start executing the new code image. After
reprogramming, all application state is lost and a device needs to reinitialize its
application, including discovering the network and its neighbors, before it can
communicate again.

In case the image is somehow incorrect or contains bugs, it could be the case
that the node is not able any longer to correctly execute this procedure again,
leaving the node essentially unusable. To remedy this, some implementations
load a basic ‘safe’ image into their external Flash that can be loaded when the
device detects that it is malfunctioning. A watchdog timer (or grenade timer
as described in the ExScal experiment [ARE+05]) is present to facilitate this
detection.

A watchdog timer is a special timer device integrated in the node’s micro-
controller that, once activated, counts down to 0 at which point it resets the
CPU, unless it is restarted before the count down is finished. By periodically
restarting the timer a reset can be prevented. Upon a reset from the watchdog
timer the ‘safe’ code image will be loaded and executed.

The use of a watchdog timer cannot, however, protect against loading and
execution of well-crafted, malicious code images [FC08]. The watchdog is started
as part of the initialization of the code image and may not be activated by
malicious images.
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Execution

Compared to other methods, described below, execution of single image WSN
applications is naturally the most efficient method. Programs are able to use all
of the device’s resources in the most efficient way possible. An application has
the entire working memory available to it, sharing it only with operating system
data structures. Application code is statically linked with the operating system
functionality, which allows compilers to optimize both, and include only those
operating system functions that are actually used by the application. The only
restriction imposed upon an application is that it includes the reprogramming
and code image replacement protocol into the code image.

Dissemination

Transmission of a complete program image may be an expensive undertaking.
Image sizes range up to 128 KB, the Flash memory size of some of the low power
sensor nodes. The Deluge dissemination protocol [HC04] reports a transmission
speed of close to 90 bytes/second to reprogram an entire network. With this
speed, a reprogramming operation can take as much as 25 minutes to finish for
a 128 KB image.

Simply transmitting the entire image into the network also requires consid-
erable communication, thus draining the nodes’ batteries. Subsequent versions
of code images contain at least partly the same code – that of the operating
system – and in particular cases may be almost completely equal, such as when
rolling out minor bug fixes or parameter updates. This suggests that it must
be possible to transmit less data than the entire image to obtain a new version,
by transmitting only the difference. Several authors propose such a method,
based on a diff-like algorithm (Reijers and Langendoen [RL03], Stathopoulos et
al. [SHE03]), based on the RSYNC protocol (Jeong and Culler [JC04]). These
more efficient protocols add complexity to the reprogramming algorithm, re-
sulting in increased size of the code images by several kilobytes and use extra
RAM. Marrón et al. [MGL+06] present a cost-benefit study of some of these
protocols.

4.3.2 Loadable modules

A somewhat different method to allow programs to be loaded wirelessly is to
enable loadingmodules of some sort: fragments of native code that can be loaded
into a device’s internal Flash besides a permanent kernel image. The WSN
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operating system Contiki [DGV04] optionally supports loading of modules, and
SOS [HKS+05] is designed especially to allow for loadable modules efficiently.
TinyCubus [MLM+05] enables the use of loadable modules for TinyOS.

Procedure

An advantage over whole image replacement is that when using modules it
is possible to load several modules simultaneously, which can each be added,
removed or replaced independently. For incremental updates involving only
minor code changes, replacing only a single module out of several significantly
reduces the amount of data to be transported to a node: only a single node
instead of the entire image.

Costs

The advantages of using loadable modules come at a price, however. First, a
module loading system requires a permanent kernel image which is responsible
for management (such as loading and removing) of modules, and control access
to the hardware resources that may be shared by these modules. Such a kernel
image must contain functions that may not be used by any module but still
occupy Flash memory. Management of modules also consumes working memory:
modules must register themselves to the kernel to receive events such as arrived
network messages and timer events etc. The kernel must keep track of these
registrations.

Loading modules into internal Flash is another source of complexity. Mod-
ules are contiguous pieces of code that must be loaded somewhere into the
internal flash. Because multiple modules may be loaded at the same time, the
address at which to load it may differ. Modules must be compiled to use location
independent instructions only, i.e. instructions should not contain hardcoded
addresses of jumps, calls and memory locations, but only relative offsets from
the current instruction location. Location independent code executes somewhat
slower compared to when using hardcoded addresses.

Modules must be able to call functions made available by the kernel, which
may be another source of execution inefficiency. It is possible to hard-code
locations of kernel functions in module code, but this makes it necessary to
recompile all modules after a kernel recompilation to make sure the addresses
are still correct. Alternatively, some systems use indirect calls to access kernel
functions, at a loss of execution speed.

Modules must share working memory as well, creating additional complexity.
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SOS allows the use of ‘standard’ C library malloc() to dynamically allocate
memory. This adds an allocation overhead of a few bytes per allocated memory
block, and creates the risk of fragmentation, at which point the devices require
a reboot.

Protection

Similar to whole image reprogramming, modules execute native code and there-
fore no form of protection is present, either from accidental behavior caused
by programming bugs or from malicious programs. Modules may even corrupt
each other’s memory and cause each other’s failure. Furthermore, module pro-
grammers do not control the size of the stack, which may again cause memory
corruption in case modules consume more stack than available, for example
when using nested functions.

Dissemination

Transmission of individual modules may proceed in a similar fashion to whole
images. Individual modules can be transmitted using a protocol like Deluge
[HC04]. Alternatively, FlexCup [MGL+06] aims to reduce the data transmission
of modules by using a differential method.

4.3.3 Interpreted programs

A third method of achieving the goal of reprogramming sensor nodes wirelessly
is by using a custom-designed program representation which is executed on the
nodes using a program interpreter. In general, this method shifts the balance
between benefits and drawbacks significantly, and a wide variety of different
methods are applicable. Some WSN systems using this method on low power
sensor nodes are Maté [LC02], the Darjeeling [BLC09] and Perk [Cor08] Java
VMs; on high speed sensor nodes Sensorware [BHS03] and Sun’s Spots [Pro09],
also discussed in Section 2.6.2.

Execution

Program interpreters use a custom program representation to encode their pro-
grams instead of the CPU’s native instruction set. This is a widely practiced
method outside the WSN world. Two of the most popular programming lan-
guages at the time of this writing, Java and C#, use this technique, as well as
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a large number of high-level or scripting languages such as Python, Perl, TCL
and PHP.

The primary disadvantage of using program interpreters is the speed of ex-
ecution. Lower execution speeds of between 10× to 100× compared to native
processor instructions are typical, although reliable execution slowdown figures
are hard to come by. In Chapter 9 we present some execution speed numbers
obtained on the SensorScheme program interpreter.

For the Java and C# platforms, the slower execution speed has been signif-
icantly reduced with the use of Just In Time (JIT) compilers. A JIT compiler
is a complex and large piece of software, however, that might not fit into the
memory-constained devices that we focus on. Therefore, for WSN platforms
we assume the use of interpreters without JIT compilers only. The interpreters
for WSN platforms developed to the day of this writing [LC02, FRL05, Pro09,
Cor08, BLC09, EHK+07e] do not make use of JIT compilers.

Slower execution on the low speed CPU’s present in WSN platforms may
slow down execution of programs to consuming all of the processors’ execution
time while not meeting the real-time demands of the executing application.
However, typical WSN applications have a low duty cycle to preserve energy.

Longer computation times will increase energy use. These effects can be
expected not to be very large, though, and decreasing in the future, as argued
in Chapter 2. Chapter 9 evaluates he energy used as a result of slower program
execution in SensorScheme.

Program Size

The significant drawback of execution speed is balanced by program interpreters’
powerful capabilities. Essentially, an interpreter or virtual machine can be seen
as a ‘virtual’ CPU with a unique instruction set. But instead of transistors, the
‘virtual’ instructions are executed by software emulating their behavior.

Program interpreters or virtual machines provide the opportunity to de-
sign an instruction set possessing exactly the desired properties and behavior,
without the burden of undesired effects. Desired properties of wireless sensor
networks such as protection and memory efficiency can be realized by designing
the interpreter to meet these goals.

As an example we take a look at the Maté virtual machine [LC02]. Maté
is an interpreter for wireless sensor networks. It is a stack-based virtual ma-
chine, designed with the requirements of WSNs in mind, such as memory and
execution efficiency. The instruction set consists of mostly single byte instruc-
tions, referred to as bytecode, analagous to the Java VM instruction set. Only
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few operations are encoded as instructions – arithmetic operations, variable and
stack manipulations (eg. load, store, push and pop) and conditional and un-
conditional jumps. The majority of the 256 possible instructions encodes for
common operations such as loading a constant, with different constant values.

Additionally, some instructions perform high-level operations such as read-
ing a sensor or sending a packet. The second generation [LGC05] enables
application-specific VMs, to include a choice of custom (high-level) instructions
to be compiled into the instruction set. Such additional instructions can perform
arbitrarily complex operations, including access to communication protocols like
abstract regions [WM04], as Levis et al. show [LC02]. (Using compression tech-
niques it is even possible to automatically generate virtual machines with indi-
vidual instructions of less than a single byte, as Latendresse [Lat00] and Evans
and Fraser [EF01] have demonstrated).

Programs for such a virtual machine may be very short – a single byte per
instruction or less, and complex tasks such as inter-node collaboration can be
encoded as a single instruction. Small, but still useful, programs can be encoded
in well below a hundred bytes, as a 71 byte example program shows [LC02].
Transporting programs of such size is fast and efficient, even for wireless sensor
networks’ extreme low data throughput rate.

Our work, described in chapters 6 and 7 uses a somewhat different but still
efficient method to represent and execute programs, and uses a compression
scheme to further reduce its size during wireless transmission of program code.
Chapter 9 evaluates and compares the program sizes using our interpreter and
others.

Protection

Perhaps even more important than the small program sizes is the ability of
interpreters to host a secure environment that protects WSN nodes from buggy
or malicious programs. For programs transported and executed as native code
protection is not possible. Such programs are able to read from and write to
any memory location on a device, which is enough to take control of a device
by malicious programs. Accidentally accessing – especially writing – the wrong
memory location is a common cause of programming bugs, and may render a
device unusable.

Interpreters eliminate this risk by allowing programs to access only those
parts of memory under control of the interpreter, and only if programs are
properly typed. Values stored in memory locations are all associated with a
data type, and reading or writing may only occur if the source and destination
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types match. This is important especially when values are references to other
memory locations, since only references to controlled memory locations may be
stored. This is a long known and often used memory protection method, used
as early as 1960 in the first Lisp implementation by McCarthy [McC62].

Protection against spurious memory access requires the use of a type sys-
tem as part of the interpreter design and primitive operations or instructions
to load and store typed values in a protected manner. Section 6.4 describes
SensorScheme’s type system.

Platform independence

Another distinguishing feature that program interpreters have is platform in-
dependence. Programs run on devices with different CPU architectures if im-
plementations of the program interpreter exist for these architectures. In the
face of a need for compatibility with future devices and implementations, as
is particularly the case with the smart office and logistics scenarios, platform
independence leaves more freedom to the design of future devices.

Dissemination

In the current implementations, the dissemination method for program inter-
preters is tightly connected to the design of the interpreter itself. Maté uses
a variant of the Trickle [LPCS04] protocol to disseminate programs as a num-
ber of independent parts or contexts, each with a maximum size determined
by the packet size in use by the communication’s implementation. SensorWare
[BHS03] is designed to distribute programs as part of a distributed agent ar-
chitecture: The agent program on a node issues a command to distribute the
program to other nodes within direct communications reach. Similarly, Agilla
[FRL05], while based on the Maté virtual machine uses an agent abstraction
to distribute its programs. SensorScheme uses a unique approach, described in
Chapter 7.

4.4 Threads and events
Within the wireless sensor network operating systems developed to this day,
the use of multi-threading has been an important and motivating design choice.
Operating systems like MANTIS [BCD+05] are created especially to include
multi-threading, while TinyOS [HSW+00] and Contiki [DGV04] have deliber-
ately left multithreading out.
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The TinyOS WSN operating system is programmed using the nesC pro-
gramming language, a extension to C for networked embedded systems. NesC
extends C with a component system suited specifically to a hardware-bound kind
of programming, where a nesC component matches a hardware component like
a chip on the sensor node device or a part of it. The component uses interface
definitions to separate specifications from implementations. This model allows
for code reuse of hardware component drivers on different platforms, such that
for example the device drivers of the CC2420 radio chip can be used directly on
both the MICAz and TMote platforms, that use different CPU’s. NesC further
has notions of commands and events that represent the bidirectional interaction
between connected components.

The memory limitations of WSN platforms has motivated the operating sys-
tem designers to use only a single call stack shared by all tasks. Operations that
would cause a thread to block in multi-processing or multi-threading systems,
such as performing input and output operations, need to be implemented in a
split-phase manner in event-based systems.

4.4.1 Events

Event-based systems execute tasks, that run to completion before the next task is
run. Tasks can be scheduled to run by interrupt handlers or by tasks themselves
or other tasks. When performing input and output operations that may take
some time, the task should not wait until completion of the operation, but
finish immediately, to allow other tasks to execute. When the I/O operation is
finished, it signals an event that will resume the program that performed the
I/O operation.

As an example of a split-phase operation we take sending a message, shown
in Listing 4.1. The function (or command in TinyOS) send(addr, msg, ...) puts
the message mess in the MAC layer transmission queue, schedules the transmit
task and returns immediately. The task calling send should now finish, before
the message will actually be sent in the transmit task. After the message is
sent a callback function is called (or an event is signaled in TinyOS) reporting
the error or success status of the transmission. In the event or callback the
application continues its operation.

Using events, the logical flow of control of operations that occur before and
after the I/O request has been separated into two individual functions. More-
over, in case the program contained live state at the time of the I/O operation,
it must be saved manually, and retrieved after completion.

53



CHAPTER 4. DESIGN TRADEOFFS

interface AMSend {
2 command error_t send(am_addr_t addr, message_t* msg, uint8_t len);

event void sendDone(message_t* msg, error_t error);
4 ...

}
6

...
8

task void sendMsg() {
10 ...

error_t error = call AMSend.send(addr, msg, sizeof(my_msg_t));
12 if (error != SUCCESS) {

reportFailure(error);
14 } else {

return;
16 }

}
18

event void AMSend.sendDone(message_t* msg, error_t error) {
20 if (error != SUCCESS) {

reportFailure(error);
22 } else {

/* continue computation */
24 }

}

Listing 4.1: Split-phase send example

4.4.2 Multi-threading

Event-driven and multi-threading architectures are two equivalent approaches
for concurrent program execution [LN79]. Still, multithreading systems pro-
vide a more natural programming experience, according to von Behren et al.
[vBCB03], because of two major drawbacks of event-driven architectures – man-
ual stack management and manual flow control. This deficiency of WSN ar-
chitecures was already pointed out by Kasten and Römer [KR05] who note that
"many conceptual operations need to be split among multiple actions", and "pro-
grammers must include additional management code, which obscures the logical
structure of the application and is an additional source of error." This has moti-
vated a number of efforts to add various degrees of threading support for WSNs
up until a fully preemptive multithreaded WSN operating system.

ProtoThreads [DSVA06], part of the Contiki [DGV04] OS are the simplest
solution to adding thread support. ProtoThreads aims to remove the split-phase
nature of an application’s main loop by using a combination of C macro’s. It
does not allocate multiple thread stacks and protothreads do not retain local
variables across blocking calls, and as such it is merely a source code refactoring
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technique.
Fibers are part of the abstract regions [WM04] communication abstraction

for TinyOS. Fibers present a method of creating blocking calls in an event-driven
operating system. Only a single blocking context may be present, allowing the
blocking application fiber and the event-based system fiber to share a single
stack. Context switching requires only to save and restore the CPU’s register
set.

Y-threads [NPR06] is a hybrid thread solution, providing preemptive multi-
threading, while preserving memory. It distinguishes Run-to-Completion Rou-
tines from pre-emptable tasks, where tasks may invoke RCRs. Because only a
single RCR may be active at any time, all RCRs share a single stack to reduce
memory allocated to thread stacks.

TinyThread [MS06] is a thread library for TinyOS. It supports creation of
multiple threads, each with their own stack, with optional preemption of threads
by others. TinyThread provides a utility, ‘stack-estimator’ to calculate the
minimum stack size needed for each thread to execute safely.

The BTnut [btn09] operating system implements cooperative multithread-
ing. Each thread requires its own stack, and unlike TinyThread, the stack size
for each thread needs to be estimated by the programmer himself.

The MANTIS [BCD+05] OS is a fully preemptive multi-threaded operating
system for embedded systems. The other methods do not provide pre-emption
by default.

Having multiple threads of execution simultaneously active (multi-threading)
requires memory allocated for each of the threads. Each thread is essentially
a procedure call stack that captures the thread’s current state of execution
(possibly with other associated data).

Memory for the thread stacks may be allocated in a variety of ways. First,
using pool allocation (sect. 4.2.3) a fixed number of thread stacks of fixed size
may be allocated. However,in the face of dynamic reprogramming, the number
and size of the thread stacks needed by an application cannot be known in
advance.

The thread stacks may also be allocated as needed from the heap. Deter-
mining the maximum needed size of the stack is not possible in all cases; it is
therefore unclear what size a stack should be allocated in its entirety. Alterna-
tively, stack space may be allocated one call frame at a time as is the case in
Darjeeling [BLC09]. This method ensures that stack memory consumption is
only as much as is currently in use, not wasting stack space that is allocated,
but not in use. In combination with a non-fragmenting heap of some sort, per-
call-frame allocation is a safe and memory-efficient design for a multi-threading
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system. The method comes, however, at the expense of extra computation time
caused by stack frame allocation every procedure call. The technique used by
SensorScheme, described in Chapters 5 and 6 uses a similar method.

4.5 Communication

Network communication takes a very important role in WSN applications, partly
because it is the major form of I/O for WSN nodes, and because of its high
impact on the energy budget.

In contrast to desktop operating systems, however, communication abstrac-
tions in WSNs are meager. The model of communication offered by operating
systems consists of sending individual small, fixed-sized packets. This makes
applications highly dependent upon platform-specific details such as the packet
size.

Facilities enjoyed in TCP/IP networks, like automatic packet (de)fragmen-
tation and reliable (streaming) transmission are not available to WSN applica-
tion programmers. Having a similar kind of communication service for WSN
platforms could simplify writing applications, which are more portable across
platforms using different packet sizes, and potentially reduce communication
and energy use.

While implementations of TCP/IP (version 4) as well as IPv6 are available
for WSN platforms [Dun03, HC08], for most WSN communication TCP/IP
is not very suitable. It is designed for symmetric bidirectional peer-to-peer
streams, and setting up a connection is more heavy-weight than suitable for
WSN communication. In wireless sensor networks, communication patterns
have an asymmetric one-to-many or many-to-one nature, and minimizing com-
munication is crucial for energy preservation.

Current WSN network protocols fail to abstract from the physical packet
size of the underlying radio technology. Network stack layers that take care
of automatic packet (de)fragmentation aren’t generally available. As a result,
applications are tuned to transmit messages that fit well into the packet size of
the hardware platform used. Such meticulous tuning is one of the reasons that
sensor network application development is a highly skilled undertaking.

Our application scenarios demand an environment that is hardware platform-
agnostic to the greatest extent possible. In the design of SensorScheme we focus
on communicating messages that may be the size of multiple packets of the
underlying protocol stack, without the need for programs to have been built
with the knowledge of the packet sizes of these underlying protocols. To realize
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this, we need to separate the logical content of a communication, which we will
refer to as a message, and the carrier of this content referred to as a packet, of
which multiple may be needed to carry a single message.

As with other design tradeoffs, the limited memory in WSN platforms plays
a decisive role in the design of a multi-packet communication method.

4.5.1 Example: gossip protocol

As an example, lets consider the intruder detection application scenario of Sec-
tion 2.1.1. The data sent is a variable number of small, fixed sized data items.
If all data items to transmit were located in an array, the entire array can be
transmitted by splitting it up in packet-sized chunks and transmitting them
one by one. The receiving nodes will then collect the transmitted packets and
recreate a copy of the entire array in their local memory. When a node receives
multiple messages in the same time (each from a different neighbor), each must
be recreated separately on the receiving node.

One possible implementation strategy would be to define a maximum logical
message size to a multiple of the packet payload size, and message buffers of
the same size. The number of message buffers defined determines the maximum
number of messages that can be received simultaneously. To make sure nodes
can receive and later send all the data items intended for them one would have
to define as many memory buffers of as large a size as possible. This reserves
excessive amounts of memory. For a network with maximum degree of n (a
node’s degree is the number of nodes it can communicate with) n arrays of n
data items each are required, resulting in memory allocation of O(n2), while
for the majority of nodes, with degree <= m, for any m < n, only a fraction
of memory equal to m2/n2 is used. This means that for a node with degree
m = n/2, only (n/2)2/n2 = 1/4 of the reserved memory is ever used, and
leaving 3/4 of the node’s reserved memory unused.

Alternatively, to address the excessive memory reservation by explicitly lim-
iting the number of buffers and their size, nodes will need to disregard messages
received from some neighbors, as they lack available buffer space. As neither
strategy yields acceptable implementations, existing WSN frameworks and ab-
stractions have largely ignored the efficiency opportunity of packing related data
into the smallest number of packets possible. Instead, common practice is to
send a single data item per packet, so it can be processed immediately upon
reception, and prevents the need for a large buffer space in memory.

In short, design of communication services independent of packet size is
prone to excessive memory consumption, in a manner similar to other design
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choices discussed in this chapter. SensorScheme includes a novel communication
abstraction that is conservative in its use of memory, described in Chapter 7.

4.6 Memory organization
In the preceding sections we have identified a number of design trade-offs rel-
evant to our software platform. The memory allocation method available is a
major influence on what programming tools and abstractions can be offered on
low power sensor nodes. Similarly, dynamic program loading is bound to strong
requirements towards memory organization and allocation.

The different structures that have to be allocated in memory are the follow-
ing:

• multiple call stacks to support multithreading

• multiple partially received messages for multi-packet communication

• program code containing instructions and constants of unknown size

• application data including arrays of unknown size to store data received
from neighbors

For each of these memory structures, allocating them in small sections rather
than large monolithic memory regions minimizes memory fragmentation. Fur-
thermore, this enables allocating as many of these structures as needed and of
sizes as large as needed by dynamically loaded programs.

We have chosen to use a single pool of small, equally-sized cells as the only
application-accessible memory. Cells may link to other cells, to create larger
compound data structures. To enforce memory protection, the data types of
values in the cells should be accessible to the interpreter. Automatic memory
management in the form of garbage collection must make sure to automatically
retrieve cells on longer in use. Chapter 6 describes SensorScheme’s memory and
type system, and its implementation on low power sensor nodes.

All of the dynamically loaded programs’ required memory will be allocated
as collections of linked cells from the cell pool, including its program code, call
stack, packet buffers, and application-allocated memory.

By using a single source of memory to allocate program code, a call stack and
application data, the program’s complexity in terms of code size, call depth or
memory use is not arbitrarily restricted. Instead, programs of broadly varying
size, complexity and behavior are able to run on the same interpreter platform.
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4.7 Programming Languages and paradigms

TheWSN platform to be designed requires an effective programming language to
build programs for wireless sensor networks. The effectiveness of programming
languages in general is a topic about which many opinions exist, but little facts.
Only a few scientific studies have been published in relation to this question,
and most writings on this topic can be regarded as the informed opinion as
voiced by experts.

4.7.1 Programming languages

Hattori et al. and Prechelt have published two similar studies [HKW85, Pre00]
that compare the effectiveness of different programming languages for a par-
ticular programming task. Hattori compares Lisp, Prolog and Ada; Prechelt
compares C, C++, Java, Perl, Python, Rexx, and Tcl. Gat [Gat00] additionally
repeated Prechtelts study for Lisp. Both Hattori’s and Prechtelt’s studies let
programmers of various skill levels program a fixed set of problems using one
of the languages under review, and measure various quality aspects, such as
time needed to perform the task, size of produced program, number of bugs
in program, and performance characteristics of the program produces, such as
execution time and memory use. Both studies show that the results vary widely,
and do not show a significant advantage of any language over others. A different
conclusion that is supported by these studies is that the size of the produced
program is a good predictor for its quality: short programs contain fewer bugs,
execute faster, consume less memory and have been written in shorter time than
longer ones. Programming languages that appear to facilitate writing shorter
programs also perform better on quality indicators.

While these studies are far from conclusive, it seems safe to conclude that
writing short programs should be a goal to pursue for wireless sensor network
systems. Short programs ensure fast and energy-efficient program transfer, and
reduce memory consumption by program code. More importantly, it may be
the key to absence or reduction of bugs, quick development time, fast execution
speed and reduced memory consumption.

Both studies show that Lisp enables writing compact programs, that take
little time to write and contain little bugs. The use of Lisp, or a descendant
language such as Scheme for a WSN platform may bring these advantages to
sensor network applications and their developers.

Two of the reasons Gat mentions in his study of Lisp for the reduced code size
are dynamic typing and the use of powerful abstraction facilities like first-class
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functions. Dynamic typing as used in Lisp reduces code size by not including
type declarations in program texts. Abstraction facilities such as higher order
functions and closures enable powerful programming strategies able to reduce
the size of source code. The next chapters will explore how these these features
can be used to make concise and effective sensor network programs.

4.7.2 Programming paradigms

Besides focusing on the suitability of individual languages for a given problem
domain, we can distinguish programming paradigms in which these languages
fall. Van Roy [VR09] proposes a classification for programming paradigms.
It distinguishes paradigms such as imperative, object-oriented, functional and
logic programming. Individual programming languages realize one or more
paradigms, which in turn is defined by a set of programming concepts, such
as mutable state, higher order functions or unification (as used in logic pro-
gramming).

Languages realize the concepts involved in different paradigms in a variety
of ways: sometimes by little more than change in language syntax, as is the
case of C vs. C++; sometimes a change in the use of computing resources is
involved, as is the case with the inclusion of higher-order functions and closures.

According to Van Roy, each paradigm supports a set of concepts that makes
it the best for a certain kind of problem. The kinds of problems encountered
in wireless sensor networks applications determine the suitability of particular
paradigms.

Research into the suitability of programming languages or paradigms for
wireless sensor networks presents itself in the form of a number of proposals of
programming languages and dialects for programming WSNs, especially those
referred to as macro-programming (see Section 2.6.3).

Functional programming

Macro-programming using functional languages has been proposed as a suitable
paradigm for sensor networks a number of times, for example in the form of
the Regiment [NW04] and Flask [MMWN07] platforms. A prime distinguishing
feature of functional languages is the use of higher order functions to iterate
over sets of nodes and sensor values, using stateless processing of sensor data –
a good match to at least a subset of WSN applications.

SensorScheme, as a descendant of one of the original functional programming
languages – LISP, provides the benefits of functional programming to wireless
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sensor network programs. SensorScheme demonstrates an additional benefit of
the use of functional-style programs through its method of program specializa-
tion by partial evaluation, discussed in Chapter 8.

Imperative programming

While a functional programming language is a good match to specify data pro-
cessing in sensor networks, it cannot always adequately cope with access to
peripherals and perform I/O actions. Imperative programming languages, such
as C and nesC, or Java, Python and other languages designed for memory-safe
execution environments, are better able to perform I/O, and manipulate hard-
ware and memory state. Within wireless sensor networks, access to sensors and
actuators, and I/O in the form of network communication are the basic ingredi-
ents of any application. Purely functional WSN platforms – of which Regiment
is the prime example, have more limited methods of performing I/O and com-
munication. The imperative paradigm is essential to a generic WSN platform
intended for the wide range of uses that we propose in our example scenario’s.

Other paradigms

Other programming paradigms have been applied to sensor network applica-
tions, in particular object-oriented programming in the form of Java. It is not
exactly clear, however, that object-oriented languages features such as dynamic
method dispatching and type inheritance are of real benefit to WSNs. Sen-
sor network applications are inherently small in size, whereas object-oriented
languages claim their benefits especially for large-scale programming efforts.

The use of Scheme as a WSN programming language is that for WSN appli-
cations where the need for object-oriented features does arise, these are acces-
sible through an object library for Scheme, such as those proposed by Kiselyov
[Kis99, Dic92].

Prolog-like declarative programming with inference has been proposed for
WSNs in the RuleCaster [BK06] and Cooperative Artefacts [SGKK04] systems.
Similarly, this functionality can be implemented within Scheme as Felleisen
[Fel85] shows. This work does not discuss, however, the use of object-oriented
or logic programming paradigms within the SensorScheme platform, but leave
this as an exercise to the reader.
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4.8 Conclusion and outlook
As with any other software platform or operating system, the design of a plat-
form for WSNs requires the consideration of a wide variety of aspects of system
organization and behavior, such as process and thread scheduling, handling of
asynchronous events, memory allocation, and, especially important for WSNs,
communication. Each of these aspects poses restrictions on the overall design
of the system, and their role in the system should be considered in unison. This
chapter has analyzed the alternatives and described the choices made for the
SensorScheme platform.

Considering the requirements of efficient reprogrammability and protection
posed by the application scenarios, we chose to use a program interpreter to
execute WSN applications. Making the design as simple as possible, our plat-
form will allocate the various in-memory structures such as program code, call
stack, communication buffers and application data from uniform memory cells
and use automatic memory management to ensure memory safety.

The choice of programing language for any piece of software is still guided
not by any objective standard, but by opinion and experience. The following
chapters describe the SensorScheme language and platform, which is designed
to suit the design decisions laid out in this chapter. Chapter 5 introduces the
SensorScheme language, and show by example the various techniques to write
short and effective WSN applications. Chapter 6 discusses the overall design
of SensorScheme and how it realizes the design goals we have discussed in this
chapter.
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Programming techniques

After describing the application scenarios and broad design decisions this chap-
ter focuses on this dissertation’s goal of developing programming methods and
abstractions to reduce the effort of programming WSN applications. This chap-
ter demonstrates the use of a number of programming language concepts and
abstractions and how they facilitate building WSN applications.

In particular, we will demonstrate the following concepts:

• closures

• higher-order functions

• reduction

• continuations

• dynamic loading and evaluation

• various uses of linked-list data structures

We will be using the SensorScheme language to create example implemen-
tations of the scenarios described in Chapter 3. This chapter aims to show
that the use of these techniques, available in SensorScheme, leads to compact
programs that are easy to build and understand.
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5.1 SensorScheme
As the name suggests, SensorScheme is based on the Scheme [ADH+98] pro-
gramming language, and its ancestor Lisp. SensorScheme is not unique as an
interpreter for the Scheme or Lisp languages for resource-constrained computers
and embedded systems. Several other implementations exist, such as the BIT
[DF05] and PICBIT [FD03] Scheme implementations for embedded processors.
In fact, the first Lisp implementation [McC60] ran on a computer – the IBM
704 from 1955 – with similar amounts of memory (4 k or 32 k of 36 bit words
of magnetic core memory) to WSN platforms and even slower computational
speed (about 40 k instructions per second). While these implementations give
good guidelines for implementing Scheme and Lisp on a resource-constrained
computer, they are not designed for the type of devices in use in wireless sensor
networks. Instead of working with textual input and output from terminals and
files, sensor networks deal with packets from the wireless network, and sensors
and LEDs as I/O devices.

We have chosen to design a WSN platform based on Scheme because Scheme
provides programming techniques and concepts that are instrumental to reduc-
ing program size and complexity which are not available to WSN platforms that
are built using procedural, imperative languages like C and its derived NesC.
This chapter will introduce those techniques and show how they are applicable
in WSN applications. These techniques are not new or unique to SensorScheme,
but available as a result of SensorScheme’s heritage of standard Scheme.

Additionally, this chapter introduces SensorScheme’s contributions which
consist of modifications and additions to make the Scheme language usable
and efficient on wireless sensor networks. We will demonstrate the following
SensorScheme contributions:

• a reduced set of data types to enable efficient data storage;

• input and output procedures to access WSN-specific peripheral devices;

• procedures to access the processor’s scheduling and timing mechanisms;

• a communication mechanism tailored to the needs of wireless sensor net-
works.

Each section in this chapter discusses an example SensorScheme program
or fragment, including example implementations of the application scenarios in
Chapter 3. The above-mentioned programming techniques are discussed upon
their first use in any of the discussed programs.

64



5.2. THE BASICS

5.2 The basics
Before we describe programs to be written in SensorScheme, we discuss its basics
of syntax and semantics. The following material is an introduction to the Scheme
language and does not contain contributions specific to SensorScheme, except
where noted. For a more extensive introduction into the Scheme language, the
reader is referred to a Scheme course book [ASS96, Dyb09, Kri02] or the Scheme
standard document [ADH+98].

5.2.1 Syntax
The SensorScheme syntax, equal to regular Scheme, is extremely simple: it
consists of tokens surrounded by parentheses. Instead of parentheses, square
brackets may be used, to enhance readability. Comments begin with a semicolon
and continue until the end of the line.

(+ 1 2 3 4) ; this is a comment
[+ 1 2 3 4] ; this line is equivalent to the line above

5.2.2 Expressions
SensorScheme programs consist entirely of expressions. Expressions are written
in prefix notation enclosed within parentheses. Unlike many other languages,
the parentheses do not play a role in denoting operator precedence, but are part
of the expression syntax. Adding or removing parentheses around an expres-
sion changes its meaning. SensorScheme does not distinguish statements from
expressions, and does not make use of infix operators.

When evaluated, an expression always returns or evaluates to a value. In
these examples we use a > prompt in front of evaluated expressions, and their
result preceded by --> on the following line.

> (+ 1 2 3 4)
--> 10

> (> 5 2)
--> #t ; true

5.2.3 Variables
Special expressions are used to define and access variables. A define expression
allocates a new global variable and binds a value to it. A variable reference
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returns the currently bound value. A set! expression binds a new value to an
existing variable.

> (define a-var 8)
> a-var
--> 8

> (set! a-var 2)
> a-var
--> 2

Notice that the name of the variable a-var above contains the non-alpha-
numeric character ‘-’. In fact all identifiers (called symbols in Scheme) may
contain a variety of characters reserved in other languages for operators and
other syntactic elements. The + in the first example also is a regular Scheme
symbol.

5.2.4 Values

The values returned from expressions may take several forms. These include
integer numbers and boolean values #t and #f. Symbols, which were used as
variable references, are valid SensorScheme values as well. The quote expression
has a single argument, which it returns unaltered, as shown below. A preceding
quote character ‘’’ is used as a shortcut notation for the quote expression.

> (quote a-var)
--> a-var
> ’a-var
--> a-var

Besides these atomic values, Scheme uses more complex values such as lists,
displayed as a sequence of values enclosed by parentheses.

> (list 1 2 (+ 1 2))
--> (1 2 3)

Note that the syntax of lists is similar to the expression syntax. In fact, expres-
sions are a special kind of value that may be evaluated. In the above example
(list 1 2 (+ 1 2)) is an expression that uses the list operator to return a list
value, written as (1 2 3).

The property that programs in a language are a special case of values na-
tive to the language, called homoiconicity, is essential for some of the ways
SensorScheme can be used on sensor networks, as Section 5.8 describes.

Programs may also contain literal list values as an argument to quote, in
which case the literal list is returned from the quote expression.
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> (quote (1 2 (+ 1 2)))
; equivalent to ’(1 2 (+ 1 2))
--> (1 2 (+ 1 2))

In Scheme, lists are implemented as linked lists consisting of pairs and (cre-
ated with the cons procedure) and terminated with an empty list (). A pair
stores two values, which can be retrieved with procedures car and cdr:

> (define ls (cons 1 (cons 2 ())))
> ls
--> (1 2)

> (car ls)
--> 1
> (cdr ls)
--> (2)

5.2.5 Conditionals
One kind of expression is the conditional. It starts with the keyword if , followed
by three expressions: a predicate expression, a ‘then’ expression and an ‘else’
expression. The conditional expression returns either the result of the ‘then’
expression or the ‘else’ expression, depending on the result of the predicate.

> (define a 1)
> (define b 2)
> (if (> a b) a b)
--> 2

The ‘else’ expression is optional. When omitted, a conditional expression
returns false in case the predicate evaluates to false.

5.2.6 Procedures
In Scheme functions are defined using the lambda expression. The keyword lambda

is followed by a list of parameters (zero or more) and a body, consisting of one
or more expressions. Section 5.2.8 explains more about procedure bodies.

> (lambda (x) (* 2 x))
--> #<procedure>

> (define double (lambda (x) (* 2 x)))

The lambda expression above has only one argument named x and a single
body expression. The result of a lambda expression, a procedure value, may be
bound to a variable to create a named global function.
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Calling the defined function works using the general expression form: a
sequence of sub-expressions between parentheses, where the first one evaluates
to the procedure value to be called.
> (double 3)
--> 6

Instead of the function’s name the first subexpression in a call may be any
expression that returns a procedure value. Like the expression below, a lambda

expression is a valid procedure to call in a call expression.
> ((lambda (x) (* 2 x)) 3)
--> 6

Naturally, the arguments to procedure calls may themselves be expressions
instead of only literal values. These subexpressions return values that serve as
the arguments in the procedure call.
> (double (double 3))
--> 12

In fact, what happens when evaluating a procedure call, is that each of
the expressions in the call expression (including the first, the function ‘name’)
are evaluated in turn; the value returned by the first expression must be a
procedure value. Upon calling this procedure, the remaining subexpressions’
values are bound to the lambda expression’s parameters. Within the procedure’s
body, (* 2 x) in the above procedure, a variable reference to x reveals the value
bound to it.

5.2.7 Let
Local variables are created using let. A let expression contains a list of variables
and values followed by a body:
> (let ([a 2]

[b (* 2 5)])
(+ a b))

--> 12

The variables and values list consists of pairs of a variable name and an
expression that returns the value to be bound to the variable. The let body
consists of one or more expressions that are evaluated in sequence. the last body
expression’s return value is also the value returned by the let expression.

The local variables introduced by the let expression are accessible to its
body expressions. If any of its body expressions is itself a let expression, the
variables of the outer let are also accessible to the inner let:
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> (let ([a 2])
(let ([b (* a 5)])
(+ a b)))

--> 12

5.2.8 Side effects
Instead of only using a single body expression, multiple expressions can be
used. While the results of these expressions are lost, using multiple expressions
is useful to perform operations that have side effects. For example, performing
I/O operations, or changing the value of a variable with set!.
> (let ([a 2])

(print a)
(set! a (+ a 2))
(let ([b (* a 5)])
(print b)
(+ a b)))

--> : 2
: 20
24

Procedure print in the above example prints the values given as its arguments
to the device’s serial port, shown as lines starting with :. It is evaluated only
for its side effects.

5.2.9 Variables and scope
SensorScheme distinguishes between global and local variables. Both are ac-
cessed and assigned using the same syntax. There is a difference however be-
tween the two. Whereas global variables are accessible from any part of the
program, local variables are accessible only in the lexical scope where they have
been defined. For variables introduced in a let expression their lexical scope
contains only expressions within the let body of their definition, and all expres-
sions recursively defined within those expressions. Access of a variable outside
of its scope will result in an error:
> (let ([v 1])

(print v)) ; within the scope of variable v
(print v) ; outside of the lexical scope

--> : 1
error

Whenever there exist multiple variables with the same name, the innermost
local variable takes precedence:
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> (define v 1); this is a global variable
(let ([v 2]) ; the outer local variable

(let ([v 3]) ; the inner variable
(print v))

(print v))
(print v)

--> : 3
: 2
: 1

5.2.10 Macros
The let expressions can be rewritten using lambda, for example:
(let ([a 2]

[b 10])
(+ a b))

is equivalent to
((lambda (a b) (+ a b)) 2 10)

The Lisp and Scheme languages use macros to transform the syntax of ex-
pressions into others. We will not detail the language used to define macro’s;
instead we only define somewhat informally the syntax of macros and the result
of transformation. Appendix C.3 describes all macros used in this work. We
write macro transformations as an expression followed by a line ==> and the
transformed expression.

Besides the let macro the Scheme standard defines several other forms, in-
cluding let*, and letrec. In SensorScheme these are also implemented as macros,
and defined in appendix C.3. Macro let* allows the values assigned to variables
to refer to previous variables in the same let* definition, and letrec is commonly
used to define recursive functions that are bound to a local variable.

Another commonly used macro is the begin macro:
(begin
(print a)
a)

==>

((lambda ()
(print a)
a))

It is used when multiple expressions are needed in places that may contain only
a single one, such as in if expressions or function arguments:
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(if (> a b)
(begin
(set! b a)
a)

(begin
(set! a b)
b))

A define macro for definition of global functions is used to create the standard
Scheme shorthand definition:

(define (max a b)
(if (> a b) a b))

==>

(define max (lambda (a b)
(if (> a b) a b)))

All other macro’s used in the programs in this chapter are listed in Listing
C.3.

5.3 A first program

The first SensorScheme program that we will discuss here introduces some meth-
ods unique to SensorScheme to build wireless sensor network programs. It show-
cases the typical program structure in the form of a delay loop and method of
communication for SensorScheme programs. It is a simple program, similar to
the TinyOS RadioSenseToLeds example application.

Time and scheduling

The sensor-blink example program, shown in Listing 5.1 periodically sends a
message containing a counter value. Nodes receiving such a message will call
blink on line 5 which displays the lower bits of the counter value on the nodes’
LEDs. The blink procedure is a primitive procedure that interacts with the
operating system to control the LED peripherals.

The program is contained in a SensorScheme module definition (line 1), that
imports all the provided definitions from module thesis-base (line 2). The full
source of module thesis-base is available in Listing C.1.

The program itself consists of two definitions and an initialization expression.
The define-handler expression (line 4) defines a message handler. We will explain
its use in the next section.

71



CHAPTER 5. PROGRAMMING TECHNIQUES

(ssmodule sensor-blink
2 (require "thesis-base.ss")

4 (define-handler (sensor-blink-msg n)
(blink n))

6
(define (time-loop t)

8 (call-at-time (+ t 4) time-loop)
(bcast (msg sensor-blink-msg (sense-temp))))

10
(time-loop (now)))

Listing 5.1: sensor-blink example program.

Procedure time-loop is defined on line 7. It has a single parameter t. The first
body expression of time-loop (line 8) calls call-at-time, a SensorScheme-specific
primitive procedure that schedules a function to be called at time t + 4 timer
ticks. The call to call-at-time immediately returns and execution continues with
the next body expression at line 9.

When the scheduled time arrives, the procedure time-loop will be called tak-
ing as its single argument the time it was scheduled, which is the current time
at the moment of calling time-loop. Procedure time-loop again schedules the pro-
cedure to be called at a later time, creating an infinite loop called at regular
intervals.

At the start of the program the initialization expression on line 11 starts
this loop by calling time-loop with (now), the current time, as argument. now is
another primitive procedure unique to SensorScheme that returns the current
time reported by the OS.

Time is measured in SensorScheme at 1/16 second intervals. The current
time, as produced with the function now is the number of 1/16s intervals since
the device was turned on. This results in time-loop being called 4 times per
second in the program.

Communication

Communication in SensorScheme takes place by calling any of a number of
primitive procedures that take as argument a message and send it using the
operating system’s communication facilities. Procedure time-loop’s second body
expression (line 9) calls communication primitive bcast to broadcast a message.
The message itself is constructed using macro msg. Different types of messages
are identified by a message type symbol – sensor-blink-msg. The message’s con-
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tent is a single sensor value, obtained from the device’s temperature sensor,
which can be read by calling the primitive procedure sense-temp.

When a message arrives, SensorScheme uses the message type symbol to
look up a message handler of the same name, i.e.. sensor-blink-msg, defined at
Listing 5.1 line 4. The define-handler macro expands as follows:

(define-handler (sensor-blink-msg n)
(blink n))

==>

(define sensor-blink-msg (lambda (src n)
(blink n)))

The resulting procedure has an additional parameter src that receives the source
address of the message. The src parameter is not used in this example, but we
will see its use later in this chapter.

Note that the message type symbol sensor-blink-msg in the call to bcast at
line (9) refers to the name of the message handler at line 4. SensorScheme
dispatches incoming messages to the message handler with the given name.
Besides the handler name, macro msg accepts any number of arguments. The
macro constructs a message which is essentially a list of values. The first value in
the list is the symbol of the handler name to be called upon reception. Chapter
7 further describes the details of communication in SensorScheme.

The body of message handler sensor-blink-msg uses the sensor value in the
message to display a number onto the device’s LEDs using the blink primitive
(line 5).

5.4 Extension: moving averages
We continue with an extension to the previous program to explain closures and
how they benefit programming wireless sensor networks.

Suppose we want to smoothen the sensor readings before broadcasting using
an exponentially weighted moving average. An exponentially weighted moving
average smoothes or averages a sequence of values according to the formula
si = α× vi + (1− α)× si−1, where vi are the values obtained from the sensor,
si are the smoothed values, and α is a ‘smoothing factor’ between 0 and 1.
Since SensorScheme only supports integer values and integer division, we use a
numerator-denominator pair to replace α:

si =
n

d
× vi + (1− n

d
)× si−1 =

n× vi + (d− n)× si−1

d
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(define (exp-mov-avg numer denom smooth-val)
2 (lambda (val)

(set! smooth-val (/ (+ (* numer val)
4 (* (- denom numer) smooth-val))

denom))
6 smooth-val))

8 (define sensor-avg (exp-mov-avg 9 10 (sense-temp)))

10 (define (time-loop t)
(call-at-time (+ t 4) time-loop)

12 (bcast (msg sensor-blink-msg (sensor-avg (sense-temp)))))

Listing 5.2: exponentially moving average

Listing 5.2 shows the definition of the moving average function and how it
is applied in procedure time-loop of Listing 5.1.

Closures

Procedure exp-mov-avg (line 1 of Listing 5.2) sets up and returns a function that
smooths successive values vi (called val) and returns the smoothed values si

(called smooth-val).
Procedure exp-mov-avg sets up the smoothing function it returns with the

numerator-denominator pair numer and denom, and an initial value for smooth-val.
The smoothing function uses variables numer and denom in the calculation of
the smoothed values and smooth-val to store the last smoothed value at each
calculation, and use it in the next calculation.

The smoothing function at line 2 refers to parameters from the outer pro-
cedure: numer, denom and smooth-val. The function is said to be "closed over" its
free variables, and is called a closure. These closed over variables are accessible
to the inner function even when the outer function has terminated, and keep
the values assigned to them.

The second definition (line 8) calls exp-mov-avg with values for numer, denom and
smooth-val and binds the function returned to global variable sensor-avg. Every
time procedure time-loop reads a new sensor value, it calls sensor-avg (line 12).

As the example program shows, closures hide computation-local state. In
object-oriented programming languages objects perform a similar function, and
can be implemented using closures [Kis99, Dic92]. For many of the situations
where the functionality of objects is required, closures are the equivalent for
languages containing it.
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(ssmodule intruder-single
2 (require "thesis-base.ss")

4 (define threshold 15)

6 (define (>-node l r)
(if (> (second l) (second r)) l r))

8
(define (centroid ls)

10 (let ([sum-v (foldl + 0 (map second ls))])
(list sum-v

12 (/ (foldl + 0 (map third ls)) sum-v)
(/ (foldl + 0 (map fourth ls)) sum-v))))

14
(define-handler (neigh-msg neigh)

16 (set! neigh-ls (cons neigh neigh-ls)))

18 (define neigh-ls ())

20 (define (time-loop t)
(call-at-time (+ t 16) time-loop)

22 (let* ([v (sense-mag)]
[me (list id v (* v (x-coord)) (* v (y-coord)))])

24 (when (eq? me (foldl >-node me neigh-ls))
(send-root (msg neigh-result (centroid (cons me neigh-ls)))))

26 (set! neigh-ls ())
(when (> v threshold) (bcast (msg neigh-msg me)))))

28
(time-loop (now))

30 )

Listing 5.3: Single hop intruder detection program.

Note that pure functional languages contain a similar notion of closures, but
as assignment is not possible for these languages, they cannot be used to capture
state in the way shown in this example.

5.5 Intruder detection scenario
After introducing the basic programming techniques and discussing a small pro-
gram we can now discuss the first application scenario: intruder detection. List-
ing 5.3 contains a simplified version of the application, receiving data only from
direct neighbors. The program has the familiar structure of a single time-loop

procedure (line 20) that is scheduled to run repeatedly, at 1 second intervals (16
timer ticks).

Within this interval a node may receive messages from neighbors through
the neigh-msg message handler (line 15). Messages contain a single data item
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which the program adds to the front of the list bound to the neigh-ls global
variable (line 16). At every 1 second interval, procedure time-loop calls sense-mag

to obtain a sensor value (line 22) and bind it to variable v, and constructs its
own message content into variable me as a list of the node’s network address
id, the sensor reading v and the node’s coordinates multiplied by the sensor
value (line 23). On line 27, the application then broadcasts the message (using
primitive bcast), if the sensor reading v is above threshold.

In-between, at lines 24 - 26, calculation of the intruder’s position occurs only
on the node with the highest sensor reading (line 24). Each node traverses the
neigh-ls list using the foldl function (line 25). When a node has found its own
reading to be the highest, it sends the centroid of the readings to the network’s
gateway or root using communication primitive send-root. The gateway then
accepts the neigh-result message and further uses the content – the intruder’s
estimated location.

Reduction

The higher order function foldl (copied in Listing 5.4 from module std, List-
ing C.2) is used for both calculating the maximum sensor value (Listing 5.3 line
24) and in procedure centroid (line 9). The function is an implementation of
the reduction strategy introduced in Sectionsect-commabstractions. It folds or
reduces a list of values (parameter ls) into a single value by repeatedly applying
a function (parameter fn) on the partial result and the next value in the list.
The second parameter, init, is the initial value used as the first partial result.
foldl returns the value of init when the list is empty.

The fold operation operates on lists of values independent of the number of
items. This method is suitable to sensor network calculations that are based on a
variably-sized data set, that may be different from node to node and change over
time. The reduction strategy is also at the heart of neighborhood abstractions
like Abstract Regions [WM04] and Hood [WSBC04], and macro-programming
platforms such as Regiment [NMW07] and MacroLab [SHW08].

(define (foldl fn init ls)
2 (if (null? ls)

init
4 (foldl fn (fn (car ls) init) (cdr ls))))

Listing 5.4: Definition of foldl

76



5.5. INTRUDER DETECTION SCENARIO

(ssmodule intruder-twohop
2 (require "thesis-base.ss")

4 (define-const threshold 15)

6 ; return node value with maximum reading
(define (max-node l r)

8 (if (> (second l) (second r)) l r))

10 (define (process-neighs ls)
(unless (or (null? ls) (member (caar ls) id-ls))

12 (set! id-ls (cons (caar ls) id-ls))
(max-node-fold (car ls) #f)

14 (sum-v-fold (second (car ls)) #f)
(sum-x-fold (third (car ls)) #f)

16 (sum-y-fold (fourth (car ls)) #f)
(process-neighs (cdr ls))))

18
(define-handler (neigh-msg ls)

20 ; add direct neightbor’s data to neigh-ls
; only if node seds its own data

22 (when (= src (caar ls))
(set! neigh-ls (cons (car ls) neigh-ls)))

24 ; calculate partial max-node and centroid
(process-neighs (cdr ls)))

26
(define neigh-ls ())

28 (define max-node-fold (closure-fold max-node ()))
(define sum-v-fold (closure-fold + 0))

30 (define sum-x-fold (closure-fold + 0))
(define sum-y-fold (closure-fold + 0))

32 (define id-ls ())

34 (define (time-loop t)
(call-at-time (+ t 16) time-loop)

36 (let* ([v (sense-mag)]
[me (list id v (* v (x-coord)) (* v (y-coord)))]

38 [sum-v (sum-v-fold 0 #t)]
[sum-x (sum-x-fold 0 #t)]

40 [sum-y (sum-y-fold 0 #t)]
[msg-ls (if (> v threshold) (cons me neigh-ls) neigh-ls)])

42 (set! neigh-ls ()) ; reset list of received neighbors
(max-node-fold me #f) ; add own data

44 (when (eq? me (max-node-fold () #t))
(send-root (msg neigh-result (list sum-v (/ sum-x sum-v) (/ sum-y sum-v)))))

46 (bcast (msg neigh-msg msg-ls))))

48 (time-loop (now))

50 )

Listing 5.5: Two hop intruder detection program.
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5.6 Extension: two-hop gossip protocol

Listing 5.5 extends the single hop protocol to use sensor values from the two
hop neighborhood. It follows a similar periodic broadcasting method, with
the exception that as values from neighbors arrive they are folded directly (in
procedure process-neighs, line 10), to avoid filling the memory with large amounts
of neighbor sensor values.

This application uses a procedure called closure-fold to create a closure (line
29) that, when called (line 14), folds values and stores intermediate results, or
returns the fold result, depending on the second argument. Listing C.1 contains
the definition of closure-fold.

The application in Listing 5.5 sends a message once every period (line 46).
This message contains the node’s own sensor value if it exceeded the threshold
(line 41), and all values it received from its direct neighbors. When such a
message is received by a node, it directly applies the fold operation to all the
received values (line 25). Nodes keep track of the neighbors from which they
have received and processed values, to make sure no duplicates are used (line
11). Similar to the previous program, all messages from first-hop neighbors are
gathered in a linked list (line 23), which is then sent at the next timer interval
along with the node’s own sensor values.

5.7 Environmental monitoring

(ssmodule monitoring
2 (require "thesis-base.ss")

4 ; definitions of query
(define period (* 30 16))

6 (define duration (* 30 16 60))

8 (define (init)
(if (= (+ (/ (x-coord) 10) (* (/ (y-coord) 10) 4)) 6)

10 (list (list id (sense-temp)))
()))

12
(define (proc l r)

14 (append l r))

16 ; auxillary functions
(define (current-epoch)

18 (/ (synced-now) period))

20 (define recv-fold (closure-fold proc (init)))

22 ; handler called when receiveing message from children
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(define-handler (parent-msg val)
24 (recv-fold val #f))

26 (define (time-loop t)
(unless (> (+ start-time duration) (synced-now))

28 (call-at-time/synced (+ t period) time-loop))
(let ([init-val (init)])

30 (call-at-time/synced (+ t (* (- 8 (hops-to-root)) 16))
(lambda (t)

32 (let ([agg-val (recv-fold init-val #t)])
(unless (null? agg-val))

34 (send-parent (msg parent-msg agg-val)))))))

36 (define start-time (synced-now))
(time-loop (current-epoch))

38
)

Listing 5.6: Environmental monitoring application

Our second application scenario uses a dense sensor network to monitor
environmental conditions in a field. It uses the concept of queries to obtain
particular sensor data, analogous to distributed databases. The application
scenario describes two queries, one providing overview information, the other
localized full data reporting to detect anomalies.

Listing 5.6 shows the implementation of the environmental monitoring sce-
nario using the anomaly query (see Section 3.2.2). The application is structured
similar to the intruder detection application in Listing 5.5. It uses a time-loop

procedure in line 26 to send data at a regular interval (line 34). The imple-
mentation makes use of the TinyOS Collection protocol described in Section
2.5.1, which sets up and maintains a routing tree. Communication primitive
send-parent (line 34) sends a message to a node’s parent node and hops-to-root

returns the distance to the root in number of hops. This application further-
more uses a time synchronization protocol ensuring a common time base for all
nodes in the network, using the primitives call-at-time/synced and synced-now to
access the network-wide synchronized time. These are analogous to primitives
call-at-time and now described earlier.

Queries

Queries state the sensors to read and operations to perform on the sensor values.
As mentioned in the scenario description, the sensing and processing takes place
at two separate moments. At the start of each period nodes generate sensor data
by calling init. Upon reception of sensor data from neighbors they are folded
into a single aggregate by calling proc.
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;;; tinySQL pseudo-code for the query:
2 ; SELECT min(moist), max(moist), avg(moist) FROM sensors

; GROUP BY x / 10 + y / 10 * 4
4 ; SAMPLE PERIOD 5m

6 (define-const period (* 5 60 16))
(define-const duration MAX-DURATION)

8
(define (init)

10 (let ([val (moist-sensor)]
[area (+ (/ (x-coord) 10) (* (/ (y-coord) 10) 4))])

12 (list (list area val val val 1))))

14 (define (proc l r)
(group (lambda (l-area r-area)

16 (let ([area-val (first l-area)]
[min-val (min (second l-area) (second r-area))]

18 [max-val (max (third l-area) (third r-area))]
[sum-val (+ (fourth l-area) (fourth r-area))]

20 [count-val (+ (fifth l-area) (+ fifth r-area))])
(list area-val min-val max-val sum-val count-val))) l r))

Listing 5.7: Overview query, producing regional summary information

1 ;;; tinySQL pseudo-code for the query:
; SELECT nodeid, moist FROM sensors

3 ; WHERE x / 10 + y / 10 * 4 = 6
; SAMPLE PERIOD 30s

5 ; DURATION 2h

7 (define-const period (* 30 16))
(define-const duration (* 2 60 60 16))

9
(define (init)

11 (if (= (+ (/ (x-coord) 10) (* (/ (y-coord) 10) 4)) 6)
(list (list id (moist-sensor)))

13 ()))

15 (define (proc l r)
(append l r))

Listing 5.8: Anomaly query, reporting the localized full data set
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The application in Listing 5.6 periodically reads some of its sensors using
the init procedure (line 29), and constructs a value which it sends to its par-
ent. Upon reception at the parent, the received value is folded with other val-
ues received from children (line 24), again using the closure-fold procedure.
closure-fold applies procedure proc repeatedly to the new values arriving and
the intermediate result. The sensor value read by init is the initial value of the
fold. After all values from children have been received, a node sends the folding
result to its parent node.

Besides init and proc, queries should also state the period duration of the
sense-and-transmit cycle in variable period, and duration of activity of the query
with duration.

Listings 5.7 and 5.8 show the init and proc SensorScheme definitions that
together form a query for both of the scenario’s example queries.

5.8 Extension: dynamic query loading

The implementation presented in Listing 5.6 is capable of executing queries,
but still lacks some required properties. First, it only executes a single query
at a time. When a different query is needed, the current program one is to be
replaced by a new one. Second, while only the definitions of period, duration,
init and proc change, the entire application is reloaded.

Dynamic evaluation

Listing B.3 shows an improved version, named SSQuery. The application ac-
cepts a query in handler query-msg, receiving a query ID number qid, and the
query’s period, duration, proc and init).

The proc and init procedures inside the message are transported as linked
lists that encode their behavior. Their encoding is equal to the encoding of
applications as they are transmitted into the network to reprogram sensor nodes.
Chapter 6 describes SensorScheme’s program encoding.

When a new query arrives the query functions proc and init are handed to the
SensorScheme interpreter in a call to the eval primitive. The interpreter eval-
uates the received data structures representing functions, and returns Sensor-
Scheme functions that will be used in calls to closure-fold (line 11)

As is common for Scheme implementations, eval makes the behavior of the
interpreter directly available to user programs. This way, programs can dynam-
ically extend their functionality. Using eval to evaluate queries, their behavior
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and complexity is limited only by the SensorScheme language itself.
When nodes receive a new query, a reference to closure recv-fold is added

to association list query-ls, and the time-loop is started (lines 30–31). Multi-
ple queries may be active simultaneously, each operating at a unique period
and performing its own sensing and aggregation operations. Nodes receive a
query message from the root node using the dissemination protocol used for dy-
namically loading SensorScheme programs. Chapter 7 explains SensorScheme’s
method of using of various communication protocols.

Every query sends the aggregated sensor values for the current time period
or epoch to its parent in a parent-msg message (line 28). These messages contain
the query ID qid and aggregated value val. Upon receiving a message from a
child node in handler parent-msg (line 6) a node uses the query ID to look up
closure handle-parent-msg and call it with the received value as argument. This
directly folds the received value with the intermediate result stored in closure
recv-fold.

5.9 Logistics

The logistics application scenario (Section 3.3) uses sensor nodes attached to
pallets and crates to monitor the transport of a shipment of bananas from the
farm to a distribution center. At the banana farm, each sensor node is pro-
grammed with a SensorScheme program, called an itinerary that tracks the
bananas as they move through the logistics process. Listing B.4 contains the
itinerary program. The program consists of two processes that will run in par-
allel.

The first process (line 56) continuously verifies whether the device can find
any nearby pallets that contain coffee, by scheduling function coffee-checker

repeatedly. If found, it signals an alarm by blinking its LEDs and broadcasting
a message.

The second process (line 59) is structured as a thread that executes top to
bottom, calling procedure state-loop several times, one for each stage of the
transport process: a) at the farm, b) inside the truck, c) on the harbor dock,
and d) inside the shipping container. The procedure continuously checks the
conditions at each stage of the transport, and raises an alarm when an error is
detected. Only when the condition for transition to the next stage is detected,
does the state-loop exit. The itinerary then prepares to transition to the next
stage by writing the the state change (and time of occurrence) to the on-device
log, and setting up the intended destination for the next stage if required.
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(define-handler (logistics-msg type kvlist)
2 (set! msg-ls (cons (list src type kvlist) msg-ls)))

4 (define properties ())
(define (set-property! key val)

6 (set! properties (cons (key . val) properties)))

8 (define (state-loop alarm? alerter transit?)
(call/cc

10 (lambda (k)
(define (time-loop t)

12 (if (transit? msg-ls) (k #t)
(begin

14 (call-at-time (+ t 80) time-loop)
(when (alarm? msg-ls) (alerter msg-ls))

16 (set! msg-ls ())
(bcast (msg logistics-msg ’goods

18 properties)))))
(time-loop (now))

20 (exit #f))))

Listing 5.9: Definition of procedure state-loop

As Listing B.4 shows, the every stage of the itinerary uses a strategy similar
to that used in SSQuery: the conditions to check and guard are implemented as
SensorScheme functions, given as parameters to state-loop. The implementation
of state-loop is shown in Listing 5.9. It accepts three arguments, alarm?, alerter
and transit?, all three functions taking a single argument. Listing 5.9 contains
an inner definition of procedure time-loop that repeatedly schedules itself, until
function transit? returns a true value (line 12).

Every period, it sends a logistics-msg message (line 17) and receives multiple
such message, gathered in msg-ls. This list of messages is used to determine
transit conditions (function transit) or alarm conditions (function alarm?).

Other devices broadcast such logistics-msg messages. The message contains
a type – either goods for devices on pallets or crates, transport for devices inside
trucks, shipping containers, or infrastructure for access points on the harbor
dock and in the distribution center.

The second message parameter is an association list of properties. All de-
vices broadcast properties about themselves, such as their destination, owner or
location as properties. The tacking device adds or modifies its own properties
at the start of the itinerary (line 60) or when changing to the next stage (line
104).

The transportation tracking sensor node on the banana pallet tracks the
transport process by filtering the list of received the messages and property lists
in them. For example, while on the farm, before loading into a truck, nods check
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whether they find any other pallets nearby that have a destination different from
their own (line 66). If any such messages are received the node will blink its
LEDs red (72), to notify personnel. A tracking node will transition to the next
state when it has found any transport device with a destination of Rio-harbor

(line 75).

Threads with Continuations

Procedure state-loop shows a technique to invoke thread-like behavior in Sensor-
Scheme using continuations. We will not discuss the nature of continuations in
full detail her, but refer the reader to Ferguson and Deugo’s description [FD01].

A continuation represents a state of computation. Capturing the current
continuation at some point in a program evaluation allows one to return to
that computational state at any later moment. The call/cc primitive called in
line 9 of Listing 5.9 is a synonym for the call-with-current-continuation standard
Scheme procedure. It expects a function of one argument as its sole parameter,
which it calls supplying the current continuation as a callable procedure. When
the continuation procedure (in argument k at line 10) is called (line 12) compu-
tation resumes to the point after the call to call-cc, which terminates procedure
state-loop. The procedure called by call/cc (line 10) does not return. Instead, it
immediately terminates the currently running program with a call to exit (line
20).

Communication protocols

Listing 5.10 contains the source code of send/ack, a small network protocol
used to communicate to harbor and distribution center access points in Listing
B.4. Its purpose is to provide a higher reliability single hop communication
service, using acknowledgements and retries. The protocol is accessed though a
blocking function call, that returns success or failure of the message transmis-
sion. Procedure send/ack (line 14) takes as parameters the maximum number of
retries (num), a timeout to wait for an acknowledgement (timeout), the message
recipient (dst), and the message itself (mess). The procedure creates a unique
message ID (using make-reqid on line 15), and uses that to broadcasts a packet
send/ack-msg (line 23) containing the destination node ID (dst), request ID (reqid)
and the message itself (mess).

Upon receipt of this message, the send/ack-msg message handler is invoked
(line 3). When the intended recipient receives the message, it returns a message
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(define exit (call/cc (lambda (k) k)))
2

(define-handler (send/ack-msg dst reqid mess)
4 (when (eq? dst id)

(bcast (msg send/ack-ack src reqid))
6 (handle src mess)))

8 (define-handler (send/ack-ack dst reqid)
(when (eq? dst id)

10 ((cdr (assoc/remove! reqid waiting-reqs)) #t))) ; return from continuation

12 (define waiting-reqs ())

14 (define (send/ack num timeout dst mess)
(let ([reqid (make-reqid)])

16 (define (ack-not-recvd t)
(lambda (t)

18 ((cdr (assoc/remove! reqid waiting-reqs)) ; call continuation
(if (> num 0) ; if still more retries

20 (send/ack (- num 1) timeout dst mess)
#f)))) ; return #f when all attempts tried

22
(bcast (msg send/ack-msg dst reqid mess))

24 (call/cc (lambda (k) ; continuation in k
(assoc-put! reqid k waiting-reqs) ; store continuation

26 (call-at-time (+ (now) timeout)
ack-not-recvd)

28 (exit #t)))))

Listing 5.10: implementation of an acknowledged send operation using call/cc.
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to the sender (line 5). Every message handler implicitly declares a parameter
src which is bound to the node ID of the node sending the message.

The send/ack protocol acts according to the layered communication stack
model: when message arrives on the node, the reliable communication protocol
passes the message content mess to a higher layer message handler through a call
to handle (line 6). See Listing C.1 for the definition of handle.

After the original sender sends the message, it creates a continuation (line
24) and stores it in association list waiting-reqs with the request ID as key (line
25). It then sets up a timer function that will be called after timeout timer ticks
have passed, and immediately terminates the currently executing task by calling
exit (line 28).

When an acknowledgement message arrives at the original sender through
handler send/ack-ack (line 8), the continuation is removed from waiting-reqs, and
invokes it returning true, returning from send/ack to its original caller (line 10).

At timer expiry procedure ack-not-recvd is called (line 27), which retrieves
the continuation and invokes it with the return value of the next attempt of
sending the same message (line 20). If no more retries are left, the continuation
is called with return value false (line 21).

Note that send/ack behaves as a blocking call – returning only after an ac-
knowledgment has been received or all timeouts have passed. While the call
is blocking, other events may execute, however. The task that started its ex-
ecution terminates when exit is called. Procedure send/ack returns in the task
context of the acknowledgement arrival or timer event.

Other uses of continuations

Besides the programmatic use shown in this example, the SensorScheme inter-
preter uses continuations in a number of contexts. First, when a program calls
bcast to send message, the interpreter retrieves the current continuation before
it sends the message. After transmission has completed (when the sendDone event
is signaled) the saved continuation is invoked to resume the computation at the
point of returning from the call to bcast.

Similarly, reading sensors is a split-phase operation in WSN operating sys-
tems. First, the read operation is started, and when the sensor value is available
from the A/D converter and event is signaled. SensorScheme uses continuations
to implement a blocking sensor reading primitive.
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5.10 Conclusion
This chapter has shown by way of a number of example programs the program-
ming techniques available with SensorScheme. As a descendent of the Scheme
language, SensorScheme provides features and mechanisms not found in other
languages for wireless sensor network platforms, such as closures, higher-order
functions, continuations and dynamic evaluation, and a language-integrated
communication mechanism.

We have shown how these techniques can be put to good use to write concise
WSN programs that use a number of techniques used elsewhere in the WSN
research field: the reduction strategy to aggregate sensed values from multiple
nodes into a single summary result, and the use of blocking I/O operations
to simplify the program’s flow of control. Additionally, SensorScheme contains
properties unique to WSN platforms, such as the eval procedure, which enables
dynamically loading and executing additional program functionality.

SensorScheme’s communication mechanism simplifies writing communica-
tion protocols as the application programmer is not burdened with the place-
ment and encoding of the message content. Instead, communication proceeds
as a remote procedure call, requiring minimal amounts of code.

SensorScheme is a multi-paradigm programing language, providing func-
tional programming concepts as well as imperative and object-oriented. The
example programs in this chapter have shown its merit as a multi-paradigm
language. One may use its functional nature where this is most applicable – as
in the use of the reduction strategy and aggregation in queries, and imperative
nature where this is most practical - to interact with sensors and actuators, to
use scheduled execution (through call-at-time) and for communication, and –
essentially, to dynamically load and modify entire applications or partial func-
tionality, as the SSQuery application has shown.

This chapter has shown how to use the discussed language features and
techniques to implement the intruder detection (Section 3.1), environmental
monitoring (Section 3.2) and logistics (Section 3.3) application scenario’s.

The next chapters will describe the SensorScheme language and platform
more formally (Chapter 6), as well as its communication mechanism in Chapter
7. Subsequenly, Chapter 8 describes an extension to the platform described
before, and shows its use in an implementation of the smart office application
scenario. We finish this work with performance evaluations of the SensorScheme
programs discussed in this scenario.
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Chapter 6

SensorScheme design

This chapter describes the SensorScheme language and interpreter. It describes
the language used in chapter 5 to implement the application scenarios and de-
scribes the reference implementation for an interpreter to execute these pro-
grams in low power sensor nodes. The SensorScheme reference implementation
is developed as part of the research described in this dissertation. It is avail-
able on-line at www.sensorscheme.net or as part of the TinyOS 2 source
distribution [Sou].

6.1 Platform overview

We will start this chapter by giving a coarse overview of the operation of the
SensorScheme platform, and refine de descriptions of the constituent parts in
the next sections.

Figure 6.1 shows SensorScheme’s overall operation showing the transforma-
tion of SensorScheme module and library files on the top into a binary code
image or network message containing a SensorScheme program on the bottom.
These transformations all take place on a regular PC-class device, which stores
and processes files to produce binary representations of programs that execute
on WSN nodes, shown on the bottom of the figure.

The SensorScheme platform consists of the source and intermediate files
(the ‘sheets’ in Figure 6.1) and processes (the ‘wavy blocks’) that transform the
contents of source files into other files. Some collections of files are organized
into libraries (the ‘stacked sheets’).
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Figure 6.1: SensorScheme compilation and injection phases
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The source and intermediate files may contain a variety of content as indi-
cated by a signature in their top left corner as follows:

• ( ) : SensorScheme source files. These files are all structured as modules
(see Section 6.2) and may contain either a program or a library.

• { } : NesC source files. These files are all part of either the nesC Li-
brary part of the TinyOS platform or a library of Sensorscheme primitives
written in nesC.

• < > : General configuration files containing data to be transferred be-
tween processes.

• 01001101 : binary files, containing programs in a machine-readable or
executable form.

Arrows connect the source files and processes, showing the flow of informa-
tion from the top of the graph – the source – to the bottom – the target. All
processes accept input files through inward arrows, and produce files through
outward arrows. We start our description on the bottom part of the graph,
the target of SensorScheme, and proceed to the top, that starts with input of
SensorScheme source files.

6.1.1 Phases
The use of SensorScheme consists of two phases, called ‘compilation’ (left part
of Figure 6.1 and ‘injection’ (right side of Figure 6.1). Compilation starts with a
SensorScheme source module file and produces a code binary to be installed into
sensor nodes’ code memory. Injection also starts with a SensorScheme source
module and produces an injection message containing binary code to wirelessly
transfer to sensor nodes in a network. Before these nodes can successfully receive
an injection message these nodes must contain a binary code image containing
basic SensorScheme functionality produced with the compilation phase.

6.1.2 Compilation
To use the platform, a network of WSN nodes must be loaded with a binary
code image containing the SensorScheme interpreter. The compilation phase
builds a code binary which the installer installs on a connected node, as the
bottom left of Figure 6.1 shows.
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The SensorScheme interpreter is written as a TinyOS application and com-
piled using the nesC compiler. The SensorScheme interpreter is configurable.
The compilation phase configures the interpreter with a set of primitive proce-
dures, or primitives. A device configuration file – a nesC source file containing
macro definitions – configures the set of primitives included in the interpreter.
Primitives are procedures available to SensorScheme programs to interact with
the operating system and peripheral devices, and perform operations on basic
data types. Primitives are written in nesC. The nesC compiler compiles the con-
figured set of primitives from the primitives library along with the nesC library
into the code binary containing the interpreter implementation.

Additionally, configuration may specify a SensorScheme source program to
execute upon initialization of the nodes as an initialization message. Sensor-
Scheme’s interpreter configuration is described in Section 9.2 as part of the
description of modules.

6.1.3 Injection

With a configured interpreter installed by the compilation phase a SensorScheme
sensor network may be deployed in its location of use, and start the injection
phase. A network is in contact with a gateway, a PC-class computer, as shown on
the bottom right of Figure 6.1. Subsequently, loadable code may be injected into
the network from the gateway. The injection phase transforms a SensorScheme
source program into a message containing the loadable code that is transported
to each of the nodes in the network. Upon reception, each node executes the
code in the message.

The program executed upon initialization described above takes the shape of
an initialization message stored in a node’s code ROM. After a node boots up it
reads the initialization message and executes the code in the message, identical
to the execution of a message containing loadable code in the injection phase.

6.1.4 Compiler, specializer and analyzer

Both the compilation phase and injection phase take a SensorScheme source
module as input, at the top of the figure. These source files contain the ap-
plication or interpreter configuration to be installed and executed on sensor
nodes.

The analyzer reads and analyzes the source module and modules from the
SensorScheme library it refers to. It distills from these a set of definitions,
primitives and top level expressions that must be present on a sensor node to
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execute the program in the source module. All of these for the input to the
next, lower stages of processing in the following ways:

The definitions and top level expression in the module are combined into an
initialization message during the compilation phase, or into an injection message
during the injection phase. The precise operation of the analyzer process is
detailed further in Section 6.2.1 and the definition of modules in Section 6.2.

The required primitives distilled from the source modules are used to build
the device configuration: only those primitives that are required by the source
module at the start of the compilation phase will be included into the code
binary installed on a WSN node.

Section 6.2 discusses more extensively the content of SensorScheme module
files, the detailed operation of the analyzer and and how modules are to be used
to compose Sensorscheme applications.

6.1.5 Loading and execution

Now that we have discussed the operation of the SensorScheme platform, we will
focus on how the source is loaded and executed on sensor nodes. SensorScheme’s
compilation phase compiles the application alongside the TinyOS libraries into
a single binary which is then written into each device’s program memory.

The following shell commands build a TinyOS application from Sensor-
Scheme source module sensor-blink and compile and install it on a device:

# First build a TinyOS application from SensorScheme program:
2 $ ssbuild sensor-blink.ss

--> Generating NesC application for module "sensor-blink.ss" ...
4 Target directory is /SensorScheme/scripts/

Module "sensor-blink.ss" compiled to size of 41 bytes
6 Code occupies 39 cells of memory in node

copying additional build files...
8

# build and install application with TinyOS tool chain
10 $ make telosb install.1

--> compiling src/SensorSchemeAppC to a telosb binary
12 compiled src/SensorSchemeAppC to build/telosb/main.exe

34526 bytes in ROM
14 1384 bytes in RAM

writing TOS image

Second, the injection phase wirelessly loads programs into a running sensor
network. All nodes in the network need to run a binary containing a properly
configured SensorScheme interpreter, as generated by the compilation phase
procedure described above. A network running this binary can then be used to
‘inject’ new applications into:
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1 $ ssbuild thesis-base.ss
...

3 $ make telosb install.1
...

5 $ ssinject sensor-blink.ss
--> injecting /SensorScheme/scripts/sensor-blink into network...

7 done.

6.2 Modules

All SensorScheme source code is contained within a module. Modules contain
the source for applications, device definitions as well as library code. Modules
contain module clauses, definitions and expressions. A module may refer to, or
require, other modules, which allows expressions in the referring module to refer
to provided definitions in the required module.

Library modules provide a set of definitions for use in applications. Listing
C.1 and C.2 show two examples of library modules, used by the example ap-
plications in Chapter 5. A special use of library modules is their use as base
module, containing the definition of a SensorScheme interpreter configuration.
Such a base module the input of the compilation phase, resulting in a configured
interpreter, compiled and installed sensor nodes s code binaries.

The use of a module system is not defined in the R5RS Scheme standard.
Several Scheme implementations do define an implementation-specific module
system. SensorScheme’s module system is similar to and inspired by that of
PLT Scheme [FS09].

Modules use Scheme syntax already introduced in Chapter 5. Below we de-
scribe the module contents using a pseudo-code syntax we will be using through-
out this chapter. A fixed-width font denotes literal source code, with Sensor-
Scheme keywords in bold. Words in variable-width italics font denote variables
– var. Lists, between brackets ( and ) may contain a range of values bound to
subscripted variables var1 . . . varn, where the range is possibly empty.

Module file

(ssmodule name

elem1 . . . elemn

)
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A SensorScheme module file contains a module definition. It includes the module
name module-name and a module body as a list of module body elements, shown
as elem1 . . . elemn in the above definition.

Each of the module body elements may be one of the following syntactical
forms:

Require clause

(require (lib name1) . . . (lib namen))
(require path1 . . . pathn)

A require clause states the library name or file path of another module required
by the current module. The named module is found and analyzed, and all its
provided definitions are made available to expressions in the current module.

Provide clause

(provide name1 . . . namen)

A provide clause names a list of definitions provided by the current module for
inclusion into other modules using a require clause. The provided definitions
may be define expressions as well as macro definitions described below, and may
be defined directly in the current module (possibly after the provide clause) as
well as included from other modules through a require clause.

Include clause

(include name1 . . . namen)

An include clause acts as a use of the named definitions. It has the effect that
the named definitions will be included into the set of referred definitions, similar
to the appearance of the name of the definition in initialization expressions or
definitions according to the procedure described in Section 6.2.1. The include
clause is used to include a definition into a program when there is no reference
to it from any part of the program, particularly for the inclusion of message
handlers.

Macro definition

(define-macro name macro-expr)
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A macro definition defines a macro. Macros transform clauses or expressions
in a module file into other, more simple ones. The macro-expr expresses the
transformation of clauses or expressions named by name. Section 6.3 describes
SensorScheme’s macro-expansion process. Note that macro-expansion operates
on module clauses. Module clauses following macro-definition name in the same
module may contain macro-expressions name, which will be expanded according
to expansion macro-expr. Macro definitions may be exported from the defining
module using a provide clause.

Primitive definition

(define-primitive name (kind component−name))

A primitive definition defines a primitive procedure. Primitive definitions con-
sists of a name, kind and the nesC component name in which the primitive is
implemented. Several different kinds of primitives are defined: simple, sender

and receiver, as described in Section 6.6. Primitive definitions may be exported
from the defining module using a provide clause.

Expression

(define name expr)
expr

Module clauses any other than those defined above are regarded as expressions,
to be evaluated in an interpreter for sensor nodes. Section 6.5 expresses the
syntax and semantics of SensorScheme expressions and the operation of the
interpreter. Expressions are either definitions, or initialization expressions.

6.2.1 Analyzer

Both the compilation and injection phase in figure 6.1 use the analyzer process
to read the SensorScheme module file at the start of each phase. The analyzer
process reads a single module and all modules referred to in its require clauses,
to produce a list of initialization expressions and a set of variable and primitive
definitions required to evaluate the initialization expressions.

The process of analyzing a module involves a number of steps.
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Read and look up modules. Read the source file input to either phase.
Source files contain a single module definition as defined in section 6.2. When
require clauses are encountered in the module the referred file is looked up and
its contents read and processed according to the same procedure.

Expand macros. SensorScheme uses macro’s to extend the syntax of pro-
grams. All expressions read are macro-expanded at this point. Section 6.3
describes SensorScheme’s macro expansion method.

Find used definitions. The source program and required modules contain
definition and expression clauses describing the program to execute on sensor
nodes. Not all definitions, however, are required to be loaded onto nodes. As
an example, in case a library module containing a collection of general purpose
procedures is required, only those that are actually referred to in a program
need to be present in the SensorScheme interpreter. All others should not be
loaded to preserve memory.

The analyzer finds all definitions used by a program with the following pro-
cess: All expression clauses that are not define expressions in the source module
and all required modules are called initialization expressions, and will be eval-
uated at the start of the program. The analyzer subsequently processes these
expressions to find references to variables in the global environment. The defini-
tions of these referred variables are themselves checked for occurrences of global
variable references, and so on, recursively, until all global variable references
have been identified. The result is a set of define expressions and define-primitive

clauses required on sensor nodes to execute the source program. The set of prim-
itive definitions is used to configure the interpreter in the compilation phase,
while the global variable definitions will be packed in an injection message in
the next step.

Construct Injection message. To run a program on sensor nodes, the defi-
nitions of all referenced global variables along with the initialization expressions
need to be transferred to a sensor node. A message containing executable ex-
pressions is called an injection message. Upon reception at a sensor node the
SensorScheme interpreter evaluates the message content – a list of expressions
– which starts the program’s execution. Section 6.5 describes the evaluation
method used by the SensorScheme interpreter.

An injection message is a regular message. Messages may contain multi-
ple SensorScheme values of arbitrary complexity and size. As a consequence of
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SensorsSensorSchemecheme’s homo-iconic nature, expressions are SensorScheme
values, which may be sent using SensorScheme’s communication facilities, de-
scribed in Chapter 7. The compilation and injection phases in Figure 6.1 will
use the injection message to deliver the program to sensor nodes.

6.2.2 Typical use

This section has described the two-phase approach to creating and using a
SensorScheme interpreter on sensor nodes, without shedding much light on the
actual use of these SensorScheme tools.

A common use case for SensorScheme-enabled sensor network deployments
is to create a platform base library, similar to the thesis-base.ss library used
throughout this work, and shown in Listing C.1. The library includes and
provides primitives needed for general program execution, such as type pred-
icates, arithmetic operations and timer control, and primitives to access the
hardware peripherals and communication protocols available on the devices.
Base libraries furthermore require and provide the standard library std.ss (shown
in Listing C.2) and optionally other libraries.

When deploying a sensor network, a SensorScheme interpreter is compiled
and installed on all nodes of the network that uses the base library as the
source program input for the compilation phase. This interpreter contains all
the primitives included in the base library, but does not start any program when
the sensor nodes start up or reset.

Programs written for this platform, that need to be loaded onto the nodes
must require the base library in their source module, as is the case of the sample
implementations of the scenarios, shown in Appendix B. The injection phase
wirelessly transfers the programs to the deployed sensor nodes.

In some cases, (for example for the environmental monitoring scenario) a
program should be loaded in the nodes directly when they boot up. This is
arranged by compiling an interpreter not from the base library, but to use the
program to load as source program input of the compilation phase. During pro-
gram development this may be desirable as well, to avoid the need to wirelessly
load a source program after every change. Similarly, when developing using the
TOSSIM sensor network simulator for TinyOS, our experience has been to pre-
fer compiling in the program under development, rather than load the program
using the simulated network when the simulation is running.
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6.3 Macros

Just like other Lisp and Scheme implementations, SensorScheme contains a
macro facility to extend the syntax of the language. SensorScheme’s macro sys-
tem is adopted unmodified from R5RS Scheme [ADH+98] – using the syntax-rules

pattern matching syntax, as well as the syntax-case pattern definition syntax
[DHB93] proposed by Dybvig. We will not describe their operation in this
work, but instead refer to their respective definitions.

Macro’s transform a Scheme expression starting with a symbol which is the
name of a defined macro into another expression, according to the transforma-
tion defined in the macro definition. Expressions whose (symbol) name is not
defined as a macro are not transformed. Next, macro-transformation transforms
sub-expressions of the module-level expressions and clauses and transforms each
expression that is defined as a macro. Chapter 5 shows some examples of macros
and the expressions they transform into.

The process of transforming an expression is calledmacro expansion. It takes
place as part of reading the source modules and required modules as part of the
analyzing process. The analyzer reads clauses in a module one by one and
performs macro-expansion on each clause, and interprets the clause resulting
from the transformation according to the rules defined in Section 6.2.

SensorScheme recognizes only a small number of module clauses (see Sec-
tion 6.2) and primitive expressions (see Section 6.5). All other special forms
or expressions (that are not procedure calls) are implemented as macros that
transform into the recognized set of clauses and primitive expressions. For ex-
ample, SensorScheme uses macros to implement a number of standard Scheme
special forms such as let, cond, and and or, and the define procedure definition
syntax. Additionally, SensorScheme defines a set of syntax extensions for com-
munication and peripheral access such as define-handler, msg and define-event.
Listing C.3 shows the macros defined in the SensorScheme standard library.

6.4 Representations and data types

SensorScheme uses three distinct representations for values and expressions.
SensorScheme module files contain a textual notation of values and expres-

sions – the external representation.
Programs and data reside as values in the memory of sensor nodes – the in-

ternal representation. SensorScheme values are allocated from a pool of equally-
sized cells, as proposed in Chapter 4.
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Additionally, sensorScheme employs a network representation, to transfer
programs and data from the gateway into the network, as well as during com-
munication between sensor nodes. Chapter 7 describes SensorScheme’s commu-
nication method and the network representation.

The three representations have separate domains. The external representa-
tion is used only in SensorScheme source files, while the internal representation
only resides in sensor nodes’ memory, and the network representation exists only
during communication. There is a direct correspondence, however, between the
representations. Descriptions of SensorScheme values in this dissertation will
always use the external representation, even when the values reside only in a
sensor node’s memory.

This section describes the data types all SensorScheme values are comprised
of. SensorScheme uses a subset of the data types defined by the Scheme R5RS
standard: the data types numbers (fixed bit width integers only), symbols, and
pairs, and singleton values (true and false) and the null value. All values belong
to one of these types. Procedures and primitives are represented as expressions
(see Section 6.5), and are not distinct data types, but created from these basic
types.

The data types vectors, characters, strings, ports and arbitrary precision
numbers (including floating point), also present in R5RS Scheme are not part of
SensorScheme. We have limited the set of valid data types for SensorScheme to
ensure their efficient storage in memory. The Scheme data types omitted from
SensorScheme can either be emulated using the provided types (such as vectors,
which are similar to lists constructed from a chain of pairs) or do not play an
important enough role in WSN applications to warrant their inclusion. (WSN
platforms do not contain display devices to show strings and characters; no file
systems are present to perform file I/O using ports.)

Below follows a description of each of the SensorScheme data types, and their
external and internal representations. SensorScheme adopts Scheme’s external
representations, limited to the subset of data types supported. The description
of each data type also refers to the primitive procedures that manipulate values
of the data type, and the type predicate to test for membership of that type.

Numbers
Numbers are simple primitive types that contain fixed bit width integer
numbers. The current implementation uses signed integer numbers of
31 bits wide to ensure a space-efficient storage, as described further in
Section 6.7.1. As is common in most programming languages numbers
are used in arithmetic operations, comparisons and bitwise operations.
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Numbers are also used as unique identifiers or network addresses for sensor
nodes. The Scheme notations for integer numerical constants also apply
for SensorScheme numbers. Arithmetic operations +, -, *, /, %, operate
on and produce numbers. Comparison operators <, <=, =, >, >= compare
numbers and produce a boolean value. Membership to the number type
can be tested with the number? predicate procedure.

The external representation of numbers consist of a sequence of decimal
digits 0 – 9 optionally preceded by a minus sign -1.

Symbols
Like any programming language, SensorScheme uses identifiers in its pro-
gram texts, called it symbols in Lisp-like languages. As we have introduced
already in Chapter 5, symbols are also present at run-time for a number
of uses. In the external representation symbols have a textual form.

Symbols are written as a sequence of any of the following characters:
alphanumeric characters A – Z, a – z, 0 – 9, plus the special characters
+, -, !, $, %, &, *, /, :, <, =, >, ?, _, ^, ~. Symbols may not start with a digit.

In the internal representation, available at runtime, symbols are repre-
sented as unique numeric values. Symbols with identical external repre-
sentation have identical numeric value, and symbols with different external
representation have different numeric values. Test for equality with the
eq? procedure is the only operation permitted on symbols. The type’s
membership procedure is symbol?.

The relation between the external representation and the internal, numeric
representation is network-wide. This relation is maintained by the gateway
computer, and updated every time new programs or data are sent into
the network. This network-wide consistency means that symbols on one
device may be referred to by another device by transporting the symbol
reference across the network. This way symbols play a crucial role within
Sensorscheme sensor networks.

Booleans
The boolean values true and false (written #t resp. #f) are the sole two
values of this type. They are the result of comparison operations and used
as the choice value in conditional expressions. The boolean type predicate
is boolean?.

1Binary, octal and hexadecimal notation are also supported using the standard Scheme
prefixes, but we do not make use of these in this document, and leave them out for simplicity
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Booleans are singleton values, only a single instance of each is available
in a node’s memory. The internal representation of singletons is a unique
value that is not part of any of the other data types.

Null
The null value is another special singleton value. The null value is com-
monly used to mark the end of a list. It is written (), and null? tests for
the null value.

Pairs
Pairs are the sole constructive data structures within SensorScheme. A
pair contains two values. The values in a pair may be of any of the available
data types. The operations permitted on pairs are construction (the cons

procedure), reference (the car and cdr procedures) and modification (the
set-car! and set-cdr! procedures). Values of type pair within other pairs
represent references to the storage location of the contained pairs. Type
membership is tested using the pair? predicate.
The external representation of pairs is a special case of the list notation.
Lists are data structures constructed from multiple pairs. A list is a se-
quence of pairs where the car’s of all pairs contain the values in the list
and the cdr’s refer to the next pair in the list, or to the empty list ()

as the list’s end. Lists are written as the external representation of the
list contents separated by whitespace, and all between brackets ( and ).
Instead of parentheses ( and ) square brackets [ and ] may be used.
The last item of the list may be written preceded by a . surrounded by
whitespace. This dot notation is used primarily in case the last item of a
list is not a null value (). Using the dot notation a single pair constructed
by evaluating (cons a b) is written (a . b).
The same value may be written in several different ways, each translating
into the same in-memory data structure. The value (1 2 3) translates to
the same internal representation as (1 2 3 . ()) or (1 . (2 . (3 . ()))).

Other notations
Besides the external representations of data types described above, the
external representation may use some other notations as well.
The quote shortcut notation ’v translates to an internal representation
that is equal to the notation (quote v) for any value v.
Whitespace separating values may consist of common whitespace charac-
ters space, tab and newline. Additionally, comments may take the place
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of whitespace. A comment starts with a semicolon ; and continues until a
newline character. Whitespace and comments are present only in external
representation and are not part of the internal representation.

6.5 Expressions

Expressions, contained in SensorScheme modules (see Section 6.2) describe the
program to execute on the SensorScheme interpreter on sensor nodes. This
section describes the semantics of executing these expressions inside the inter-
preter.

We can express the execution semantics of the interpreter with an imple-
mentation of eval. Appendix A presents a definition of eval as a SensorScheme
procedure. eval is a meta-circular interpreter – an implementation of an inter-
preter expressed in the language it interprets. The SensorScheme interpreter
executing on sensor nodes is itself written in nesC, and displays behavior iden-
tical to that of the eval function listed in Appendix A.

The remainder of this section discusses the operation of eval. We use a
imperative pseudo-code notation with pattern matching on SensorScheme values
to stress the separation between the SensorScheme language and the interpreter
implementation. We will explain the various notational conventions on first use.

For notational convenience we denote eval as E. Additionally, the evaluation
process makes use of function A, equivalent to procedure apply in Appendix A.

Function E accepts as arguments an expression expr to evaluate, and a local
environment ε. The expression to evaluate – expr – is a SensorScheme value.
Its type or structure expresses the computation to perform. The expression to
evaluate may take the shape of one of the seven different primitive expressions
according to the definition of E below. All other expressions can be defined in
terms of primitive expressions.

The result of evaluating an expression is a SensorScheme value. The process
of evaluation may also cause side-effects to occur. The side effects performed
by the interpreter are definition and assignment of variables, and the operations
performed by primitive procedures.

The local environment ε holds bindings to variables that are accessible to
expression expr and its sub-expressions. Initially the local environment is empty.
Besides the local environment ε function E accesses the global environment G
holding variables that are accessible from any location in the program.

The definition of function E contains operators that bind or retrieve variables
from either environment. Section 6.5.2 further describes these operations of the
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environments.

6.5.1 Primitive expressions

The SensorScheme evaluator evaluates an expression by examining the data type
and structure of the expression argument as a SensorScheme value. Expressions
may consist of combinations of the following primitive expressions. Our nota-
tion contains patterns on argument expr of function E. When the value of expr
matches the pattern, pattern variables (in slanted font) are bound to the subex-
pressions of expr and the corresponding function part is evaluated. Otherwise
pattern matching proceeds to the next pattern of function E.

The implementation of functions E and A in Appendix A performs the pat-
tern matches using conditional expressions on type predicates and combinations
of car and cdr.

Literals

E(expr, ε) when (number? expr) |
(boolean? expr) |
(null? expr)

return expr

E((quote l i t e ra l), ε)
return l i t e ra l

When the expression expr is a literal value – number, boolean, or the empty
list (null) – E returns the expression expr. When E evaluates a quote expression
– a list with the first element the symbol quote and the second element a literal
value – it returns the literal value within the quote expression.

Note that we match the type of argument expr in the ‘when’ clause using
the type predicate primitives described in Section 6.4.

Variable references

E(expr, ε) when (symbol? expr)
return ε[expr] if expr ∈ ε

G[expr] if expr ∈ G
error otherwise
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Any expression that is a symbol refers to a variable. If a variable binding for
expr is present in the local environment ε E returns the value bound to expr in
environment ε. Otherwise if a binding for expr exists in the global environment,
the binding for expr in G. It is an error to refer to a variable that is not bound
in either the local or global environment. See Section 6.5.2 for the description
of operations on environments.

Conditionals

E((if pred conseq alt), ε)
return E(alt , ε) if E(pred, ε) = #f

E(conseq , ε) otherwise

E((if pred conseq), ε)
return #f if E(pred, ε) = #f

E(conseq , ε) otherwise

A conditional expression tests the predicate expression pred and, depending
on the result of pred, returns the value returned by evaluating either expression
conseq or alt. E recursively invokes itself to evaluate the sub-expressions pred,
conseq and alt. Each invocation of E may cause side effects, therefore the or-
der of evaluation the sub-expressions is relevant. A conditional expression first
evaluates pred. If the result is any value other than #f conseq is evaluated and
its result returned. Otherwise alt is evaluated and its result returned, or #f is
returned if alt is not present.

Definitions

E((define var value), ε)
G[var]← E(value, ε) if var ∈ G
G← G ∪ {var 7→ E(value, ε)} otherwise ;

return ()

A definition extends or updates the global environment with a binding of
variable var to the result of evaluating expression value. When variable var is
present in the global environment, the value bound to var in G updated with
the result of evaluating value. If not present, the definition extends G with a
binding of variable var to the result of evaluating value. A definition always
returns ()2.

2This is a deviation from the Scheme standard where the result of definition or assignment
is an unspecified value
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Definitions show the dual paradigm nature of SensorScheme: The first body
expression performs a side-effect modifying environment G. The next expres-
sion, separated by a semicolon, produces the return value of the definition ex-
pression.

Assignments

E((set! var value), ε)
ε[var]← E(value, ε) if var ∈ ε
G[var]← E(value, ε) if var ∈ G
error otherwise ;

return ()

An assignment expression replaces the value bound to variable varwith the
result of evaluating expression value. It is an error to assign to a variable that
is not bound in either the local or global environment. Similar to a definition
expression, assignment performs a side-effect. An assignment expression always
returns the empty list ().

Lambda expressions

E((lambda (var1 . . . varn) expr1 . . . exprm), ε)
return (proc ε (var1 . . . varn) expr1 . . . exprm)

A lambda expression defines a procedure. It consists of a list of formal
parameters (var1 . . . varn) followed by the function body as one or more body
expressions expr1 . . . exprm.

A lambda expression returns a procedure, a special expression, named proc,
that captures the local environment ε in effect at the moment of evaluating
the lambda expression. A procedure call that calls it some later point makes
the variables in the captured environment available to the expressions in the
procedure body.

Procedure calls

E((fn arg1 . . . argp), ε)
return A(E(fn, ε) E(arg1, ε) . . . E(argp, ε))

Any expression that is not one of the above primitive expressions is a proce-
dure call. The expression fn evaluates to a primitive or procedure value. The
zero or more argument expressions arg1 . . . argp all evaluate to an argument

106



6.5. EXPRESSIONS

value.
Expression fn may be any expression and should evaluate to a procedure as

produced by evaluation of a lambda expression or a primitive. Usually fn is
either a symbol, referring to a bound procedure or primitive value, or a lambda
expression, which is then evaluated to a procedure. Naturally, more complex
computations to obtain a procedure are possible.

As a consequence of possible side-effects during the evaluations of fn and
arg1 . . . argp (such as reassignments to variables in ε) their order of evalua-
tion is relevant to the semantics of the program. The interpreter evaluates the
procedure expression fn and each of the arguments exprs in left to right order3.

Apply

A(prim, arg1 . . . argn) when (primitive? prim)
return prim(arg1, . . . , argn)

A((proc ε (var1 . . . varn) expr1 . . . exprm), arg1 . . . argn)
let ε∗ = ε ∪ {var1 7→ arg1 . . . varn 7→ argn}

E(expr1, ε∗) ;
. . . ;

return E(exprm, ε∗)

Function A, called apply in Appendix A, performs the call to procedure or
primitive fn with arguments exprs. If the expression fn evaluates to a primitive
procedure prim, A calls the primitive with the argument values args, returning
the primitive’s return value. Section 6.6 further describes primitive procedures.

When fn evaluates to a procedure value function A binds the variables from
the formal parameter list var1 . . . varn with arguments from arg1 . . . argn and
produces an extended environment ε∗ by extending environment ε captured in
the procedure value with these bindings. A then evaluates the body expressions
body, using the extended environment ε∗ as the local environment. The extended
environment ε∗ is in effect only for the duration of the evaluation of the body
expressions.

The procedure body may contain multiple expressions expr1 ... exprm, which
all evaluated in sequence. Body expressions expr1 ... exprm−1 are evaluated
only for the side-effects that may occur during their evaluation, their return val-
ues are discarded. The procedure call returns the value produced by evaluating
the last body expression exprm.

3In fact, this strict prescription of order of evaluation is a deviation from the Scheme
standard, where arguments are evaluated in unspecified order.
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6.5.2 Variables and environments

var G = ’([cons . < primitive cons>]
[car . < primitive car>]
[cdr . < primitive cdr>]
. . .)

The SensorScheme interpreter accesses variables bound in environments.
SensorScheme uses two distinct environments, a local and a global environment.
While their role is somewhat different, their structure is identical.

Just like expressions, environments are constructed of collections of Sensor-
Scheme values. Environments have the structure of an association list – a list
containing pairs that each hold a key and a value.

As shown above, G is initialized at startup with bindings to the primitive
procedures available to the interpreter, stored as an association list.

The definitions of E and A used the following operations on environments:
ε[var]

Variable reference denoted as ε[var] looks for the value bound to a variable
var in environment ε. This is achieved by traversing the environment
from first to last until a binding containing variable var is found, and the
bound value is returned. Function lookup in Appendix A implements this
behavior.

ε[var]← value
The set! primitive expression replaces the bound value to a variable var
present in an environment ε using notation ε[var] ← value. Again the
variable binding is looked up by traversing the environment. The found
pair holding the binding is then altered, replacing the value in its cdr with
the new value. Function update! in Appendix A implements this behavior.

ε ∪ {var 7→ value}
Extending an environment, denoted by ε ← ε ∪ {var 7→ value} places a
new binding at the front of the environment. Definitions extend the global
environment and procedure applications extend the local environment.
The primitive cons is used in Appendix A to add a binding to the front of
the environment.
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6.5.3 Program loading

As described in Section 6.2, a SensorScheme program consists of a sequence of
definitions and expressions contained within a module and the library modules
it refers to. When wirelessly transferring a program these definitions and ex-
pressions are analyzed and collected in an injection message (with message type
symbol inject-handler) and transported to a sensor node, where the interpreter
executes the expressions in the message. During the analyzation process, macros
used in the external representation are expanded into more basic expressions.

Loading and execution of the program expressions contained within an in-
jection message consists of subsequent evaluation of the expressions in the
inject-handler message according to the following definition of the inject-handler

message handler:

(define-handler (inject-handler expr-ls)
(for-each (lambda (e) (eval e empty-env)) expr-ls))

All expressions in the message are evaluated first to last using eval with an
empty local environment. The global environment contains the set of primitive
procedures configured in the interpreter, and possibly variables defined earlier.
Those expressions that are definitions – (define var, value) – load the applica-
tion by creating the global variable or procedure var. Other, non-definition
expressions initialize and start the application, for example by starting a timed
infinite loop, as shown in Chapter 5.

6.6 Primitives

Primitive procedures or primitives are procedures accessible to SensorScheme
programs that are implemented with native processor instructions. Primitives
implement operations on basic types and provide access to the operating system
and hardware resources. Section 6.4 already described the operations on basic
types and Chapter 5 introduced some of the primitives to access WSN-specific
functionality.

6.6.1 Basic operations

Operations on basic types include type predicates number?, symbol?, pair?, boolean?
and null?, the equality test eq? and arithmetic and comparison operators +, -,
*, /, modulo and <, <=, =, >, >=. Additionally, there are the operations on pairs
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cons, car, cdr, set-car! and set-cdr!. All of these operations are implemented as
primitives, with semantics identical to standard Scheme.

Additionally, continuations, discussed in Section 5.9, are made accessible to
SenorScheme programs through the call-cc primitive.

6.6.2 Eval
SensorScheme implements eval as a primitive.

It uses the SesnorScheme interpreter to evaluate an expression according to
the description in Section 6.5, with an empty local environment, and returns
the value calculated by the interpreter.

The operation of SensorScheme’s eval primitive differs somewhat from its
counterpart in standard Scheme, which accepts an expression in external repre-
sentation, where expressions include macro-invocations, to be expanded before
evaluation begins. SensorScheme eval does not macro-expand its argument ex-
pression; macro-expansion occurs only at the gateway.

SensorScheme uses eval as an essential part of its operation, as the means
of loading and executing programs on sensor nodes. Besides eval SensorScheme
includes an inject-handler message handler primitive (discussed further in Chap-
ter 7) which invokes eval for each of the expressions in the message, as described
already in Section 6.5.

6.6.3 WSN primitives
Besides the general purpose primitives described above, that are part of the
Scheme standard, SensorScheme contains a set of primitives unique to Sensor-
Scheme to access and control WSN operating system and hardware.

now

The first one, now, returns the current time as 1/16 seconds since the device
started. Its primary use is in conjunction with the primitive call-at-time.

call-at-time

Typical operating system functionalities such as starting a new process or thread
of computation, as well as signaling some amount of time has passed (usually
referred to as a timer) are all implemented with the primitive call-at-time. It
accepts two arguments, the first one the time t at which to schedule a computa-
tion, the second a function f of one parameter that is called when the specified
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time has arrived. call-at-time maintains a queue (built as an association list
made up of pairs) where the scheduled functions are added and removed when
their scheduled time has arrived. At the scheduled time t function f is called
with t as its single parameter.

The call-at-time primitive is usable for different scheduling tasks. First, it
can be used to implement a timed delay loop as the applications in Chapter 5
show. This use is similar to repetitive timers as provided by WSN operating
systems such as TinyOS.

Second, call-at-time can be used in the place of the one-shot timers that
TinyOS and other operating systems provide. Section 5.9 shows the use of
call-at-time to wait for timeouts of the reliable communication protocol.

Third, by scheduling a computation at the current time, call-at-time es-
sentially spawns a new thread of computation. Applications can use multiple
threads, each of which may be blocked waiting for I/O, at which time the other
threads can resume their operation.

SensorScheme uses coarse-grained time measurements of 1/16 seconds for
two reasons. First, with a 31-bit integer as data type, time values overflow after
4.25 years. While this might not cover the lifetime of a deployed sensor net-
work, it is a long enough duration for many sensor practical situations. Second,
not allowing more fine-grained timing prevents excessively high computational
loads resulting from high frequency delay loops. Typical WSN applications use
low frequency sampling and do not have any need for sub-second scheduling.
From our experience, a time resolution of 1/16 seconds is sufficient for WSN
applications.

Sensing

Access to sensors is crucial for wireless sensor networks. SensorScheme provides
primitives to read sensors, of which we have seen examples like sense-temp. The
sensors available is hardware platform-specific, but many senors have a similar
interface. Primitive sense-temp and similar primitives accept no parameters and
return a sensor measurement as a number.

Some sensors do not return a value immediately, but take some time, for ex-
ample when they are connected through an ADC (analog to digital converter).
TinyOS uses a split-phase approach to read these sensors, with a read com-
mand to initiate the sensing, and a subsequent readDone event that returns the
result when the sensor has produced a value. In SensorScheme these sensors
still have just a single sense-* primitive that returns the sensed value. These
primitives store a continuation of the current computation, then call the TinyOS
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read command and exit the SensorScheme interpreter. When the readDone event
is signaled it calls the stored continuation to continue the SensorScheme eval-
uation. According to their split-phase nature, between read and readDone other
computations can take place, including SensorScheme evaluation such as han-
dling received messages and scheduled timers.

Other ‘sensors’ only signal the occurrence of events, such as the push of a
button. These sensors are implemented in SensorScheme in a similar manner to
split-phase sensors: applications call the sensor primitive (such as button-pushed)
to express interest in the event of a pushed button. The primitive then blocks
the computation while storing the current continuation. When the button is
pressed, the computation continues with a call to the stored continuation.

Output

WSN hardware platforms have only little support for user output. Commonly,
the platforms have some LEDs to show some program state, and a serial port
that can be used to output text for debugging purposes. SensorScheme provides
the primitives blink and print for these purposes. Primitive blink accepts a single
number and uses the lowest significant bits to set the state of the array of LEDs
on a sensor node. Primitive print accepts any number of arguments and writes
these in external representation to the node’s serial port.

Communication primitives

Communication in SensorScheme takes place through communication primi-
tives. Chapter 7 describes SensorScheme’s communication method and primi-
tives.

6.6.4 Implementation

Each primitive is implemented as a module for nesC, the implementation lan-
guage of TinyOS, and are accessible by the interpreter through a NesC interface.
Different kinds of primitives exist. Most primitives, performing simple arith-
metic operations, are accessed through the SSPrimitive interface. Listing 6.1
shows the NesC interface definition, as well as the implementation of one of the
primitives, AddPrim. The interpreter calls a primitive using the SSPrimitive.eval

command. The AddPrim primitive in Listing 6.1 access its arguments using the
arg1 and arg2 C macros, performs a type conversion and type check C_numVal),
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interface SSPrimitive {
2 command ss_val_t eval();

}
4

configuration AddPrim {
6 provides interface SSPrimitive;

}
8 implementation {

components AddPrimM;
10 components SensorSchemeC;

12 SSPrimitive = AddPrimM;
AddPrimM.SSRuntime -> SensorSchemeC;

14 }

16 module AddPrimM {
provides interface SSPrimitive;

18 uses interface SSRuntime;
}

20 implementation {
command ss_val_t SSPrimitive.eval() {

22 int32_t x = C_numVal(arg_1);
int32_t y = C_numVal(arg_2);

24 return ss_makeNum(x + y);
};

26 }

Listing 6.1: NesC interface and implementation of a simple primitive. C_numVal

and arg_1, arg_2 are C macros facilitating access to and type checking of argu-
ments.
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Figure 6.2: Memory layout of SensorScheme values.

computes the result, and returns the calculated result as a SensorScheme value
(ss_makeNum).

6.7 Implementation

6.7.1 Data types and memory

We have argued in Chapter 4 to use a memory pool consisting of small, equally-
sized blocks. Blocks may contain references to other blocks, but references
must be distinguishable from other values to enforce memory protection. The
SensorScheme language and interpreter has been designed entirely to support
this model of memory allocation.

As described in Section 6.4, SensorScheme distinguishes the data types num-
ber, symbol, pair, boolean and null. Symbols have only a numeric representation
in memory, and typically less than 50 symbols are used in any WSN applica-
tion. The boolean and null types consist of only three distinct values. these are
represented as special cases of symbol values. This leaves only three data types
to be represented in memory.

Figure 6.2 shows the memory layout of the number, symbol and pair data
types. The memory pool from which SensorScheme memory is allocated contains
cells of 4 bytes in size. Cells are used to store pairs as well as large numbers.

SensorScheme uses values of 15 bits in size. A value contains both its type
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as a type tag and content in a value/address field. A value’s type tag occupies
the least significant two bits. There are four type tags, corresponding to the
data types and their encoding in memory.

Symbol
The value bits contain the symbol’s numeric representation.

Small number
For numbers n, −212 ≤ n ≤ 212 − 1, the value/address bits contain the
numeric value.

Large number
All numbers n outside the small number range and −230 ≤ n ≤ 230 − 1
are stored in a separate cell, the address of which is contained in the 13
value/address bits.

Pair The value/address bits of a pair contain the address of the cell where the
pair is stored. The cell contains two 15 bit regions that contain the pair’s
values.

The number data type is represented by either a small number, for numeric
values that can be contained in 13 bits, or a large number for values up to 31 bits
in size. A value of type large number contains a reference to the cell containing
the numeric value.

Addresses of cells in values and pairs are 13 bits in size, addressing at most
213 = 8192 cells, that occupy at most 32k bytes of RAM. None of the currently-
available low power sensor node platforms provides this amount of memory.

6.7.2 Garbage collection
The SensorScheme language facilitates allocation of memory cells through the
use of the cons primitive, or when creating a large number. To prevent running
out of free cells quickly, when values stored in cells are no longer needed in
future computations, they may be reclaimed for reuse.

To automatically reclaim unused cells we have implemented a simple two-
stage reversed mark-and-clear garbage collection algorithm. First, bit 31 or the
free bit is set on all cells, indicating a possible free cell. Then starting from
the roots all live cells are traversed using the Deutsch-Schorr-Waite marking
algorithm [SW67]. This needs only 1 additional bit per pair (bit 15) and no
extra storage for long numbers. When a new cell is allocated, the cell pool
is searched upwards using a free-pointer, until the first free cell is found as
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indicated by the free bit. The free pointer is assigned this cell’s address and
this cell is marked used (by clearing the free bit) and returned. After a number
of subsequent allocations, when the free pointer points at the top of the store,
a new garbage collection is started.

On MSP430-based platforms (such as the TMote Sky, our primary devel-
opment platform) the implementation of this simple collection method has a
running time of 12n + 52m CPU cycles, where n is the total number of cells
and m the number of used cells. With a typical number of 2048 cells, a garbage
collection takes about 10ms to execute when memory is half used.

6.7.3 Tail calls

SensorScheme is properly tail-recursive, just like standard Scheme [ADH+98].
Tail calls are procedure calls occurring at the tail of an outer procedure, where
the outer procedure immediately returns the return value of the inner, with-
out performing any computations between the tail call and the procedure end.
Properly tail-recursive implementations support an unbounded number of tail
calls, requiring no memory (on the call stack) per tail call.

6.7.4 Call Stack

Calls that are not tail calls save the context of the call and and local environment
at the time of the call on a call stack. Each call frame on the stack consists of
a linked list containing values to be preserved, and subsequent call frames are
chained by pairs. Consequently, stack size is not fixed but can grow as needed
by the application. When a call returns the last frame inserted from the stack
is released, and saved values are retrieved from the stack. The pairs forming
the last frame will no longer be accessible through any reference, and will be
recycled at the next garbage collection.

6.7.5 Continuations

Retrieving the current continuation captures the call stack and local environ-
ment and makes these available as a first-class value. The SensorScheme call
stack is implemented as a chain of pairs allocated from the cell pool. Sensor-
Scheme allocates stack space only as much as needed, thereby removing the
stack memory allocation issues of multithreading. Because stack frames are
allocated from the cell pool, an unbounded number of coroutines can be used
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(as long as free memory is available), without wasting memory on unused stack
space as is the case with the thread libraries referred to earlier.

6.7.6 Optimizations and extensions

The design and implementation of the SensorScheme compiler described in this
chapter can be modified to improve its performance. We describe a number
such optimizations here, some of which have been implemented and are used in
the evaluation experiments described in Chapter 9.

De Bruijn index notation

The local environment as described in Section 6.5.2 contains bindings of vari-
ables to locations, and is implemented as an association list. Local variables in
programs always refer to a binding that is in a constant depth in the association
list. It is therefore equivalent to refer to the depth in the environment, rather
than variable symbol to which the variable’s value is bound, in a manner similar
to De Bruijn index notation for the lambda calculus [DB72]. Using this, lambda
expressions need to contain only the number of formal variables they use, rather
than a list of formals indicating their names.

To implement this optimization, all local variable names need to be replaced
by a numeric value indicating the depth of the environment where the variable’s
value is stored. The SensorScheme analyzing process (see Section 6.2.1) replaces
the symbols of local variables with one of the special symbols %l0 – %l15. The
benefit of this optimization is reduced memory use. Lambda expressions are
smaller, occupying fewer pairs in memory and during injection (see Chapter
7), and environments use fewer pairs to contain local variables. Note that this
optimization is restricted to the local environment and does not apply to the
global environment.

Cell pool in Flash memory

The description of the SensorScheme interpreter in this chapter assumes the
cell pool is located in RAM only. In current WSN hardware platforms RAM
is smaller than the on-chip Flash memory that stores the binary code image.
Locating a portion of the cell pool in Flash memory may conserve valuable RAM.
Values in the cell pool that will never change, such as program expressions may
be stored in the Flash cell pool.
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This optimization is not equally suited for all current low power sensor nodes.
Devices using a Harvard architecture CPU, such as the Atmel AVR in the various
Mica* devices cannot implement this optimization without significant loss in
speed, due to the separate address space and instructions for access to RAM
and Flash. The MSP430 used in the TMote Sky – our development platform –
does support this optimization without loss of computational efficiency.

Address space and type extensions

The memory layout described here is able to use at most 32 KB of memory.
Most high speed sensor node platforms have more RAM available than this. It
is possible to extend the SensorScheme address space without change in behavior
of the interpreter by using a different memory layout. We have not implemented
an alternative memory layout for such devices, but simply note the possibility
here.

Larger memory sizes also reduce the risk of memory fragmentation, suggest-
ing the possibility of alternative allocation strategies than the uniformly sized
cell pool described here. Alternative representations also open up the possibility
of supporting more data types than only integer numbers, symbols and pairs, to
include vectors and strings and non-integer numeric types such as floating point
numbers. These extensions and optimizations have not been implemented, we
merely mention them here as possible future work.

6.8 Differences to standard Scheme
The execution semantics of SensorScheme described in this section match the
R5RS Scheme standard wherever possible. SensorScheme has deviated from the
standard to accommodate the nature of wireless sensor networks and the tight
memory restrictions of WSN hardware platform. Wherever possible, we have
sought to maintain conventions and requirements of standard Scheme. This
section describes the main differences between SensorScheme and the Scheme
standard.

6.8.1 Types
First and foremost, SensorScheme uses a reduced set of basic types. This set
of types enable memory allocation of only fixed sized cells, to prevent memory
fragmentation. These cells are small, only 4 bytes, to keep memory consumption
within the strict limits of WSN hardware platforms.
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6.8.2 Module system
The R5RS Scheme standard does not include a definition of a module system,
but most implementations of the standard do. In this spirit, SensorScheme
implements its own module system. The module system is designed for use
with sensor networks, by selecting only those procedures and primitives that
are actually required to execute a program. This enables programs to execute
on small memory footprint devices such as sensor nodes, making sure no memory
is wasted on unneeded functionality.

6.8.3 Primitives
Related to the module system is SensorScheme’s concept of primitive procedures,
unique to SensorScheme. Primitives explicitly describe the functionality that
must be implemented in the interpreters implementation language – nesC, and
make it accessible to the module system. R5RS describes only built-in proce-
dures which include all of the languageÕs data manipulation and input/output
primitives.

6.8.4 Description of semantics
Rather than describing the semantics of the SensorScheme language we have de-
fined SensorScheme by the translation of source-files into expressions evaluated
by the interpreter and the behavior of the interpreter.

Furthermore, the interpreter is defined more concretely. Section 6.5.1 de-
fines the seven primitive expressions handled by the interpreter. The Scheme
standard, by contrast, defines a larger set of syntactic forms that all must be
supported by an implementation, leaving undefined which of these is primitive
and which may be translated to primitive forms using macros.

Similarly, SensorScheme defines a concrete definition of the interpreter and
environment data structures, instead of a more abstract description of the be-
havior of Scheme expressions.

6.9 Discussion
SensorScheme has a lot in common with virtual machine architectures, of which
a number have been developed for wireless sensor networks. Maté [LC02] is
an early virtual machine for wireless sensor networks, developed specifically for
early classes of low power sensor nodes. Perk [Cor08] and Darjeeling [BLC09],

119



CHAPTER 6. SENSORSCHEME DESIGN

as well as NanoVM [nan] are Java VM implementations for low power sensor
nodes. Several Scheme and LISP implementations for embedded systems also
use a virtual machine to execute programs [DF05, FD03, WO05, Bur02].

All share the goals of efficient reprogramming, platform independence and
protection at the expense of slower execution speeds. The design difference
between SensorScheme’s interpreter and virtual machines do, however, have
impact on various aspects of their behavior.

6.9.1 Program representation

A major difference between virtual machines and SensorScheme is the way in
which program code is represented. Virtual machines represent programs as
arrays of instructions, whereas SensorScheme uses chains of its native data types
of pairs, symbols and numbers to represent programs.

Stack-based virtual machines such as the Java VM use a number of different
kinds of instructions: operations on primitive types, load and store operations,
jump and call operations. SensorScheme includes the functionality of each of
these classes of instructions, represented in a different way, which we discuss
here.

Primitive operations perform operations on primitive types such as arith-
metic and logic operations and may include other operations (such as I/O or
operating system functions) that are available as VM instructions. They are
the virtual machine equivalent of SensorScheme’s primitive procedures.

Load and store operations exist in varieties, depending on the location of
the loaded or stored value. For example, the Java virtual machine distinguishes
between values stored on the stack, in local variables, as fields of objects, in
the constant pool and immediate arguments, and different instructions exist
to load or store from these locations. SensorScheme loads and stores values
only as variables in the local or global environment, or as constants or quoted
values embedded within the program. SensorScheme implements each of these
with a single primitive expression. Other operations, such as passing function
arguments and return values are implicit in the structure of SensorScheme ex-
pressions, rather than implemented as load and store operations.

Jump and call instructions have equivalents in SensorScheme’s if and pro-
cedure call primitive expressions. Jump and call instructions contain an address
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to the target location. The bit width of these addresses determine the number
and size of functions. For example, Maté’s instruction format supports a maxi-
mum instruction array length of only 256 instructions per function, and only a
very limited number of functions. Similarly, the Java VM limits methods to a
length of 216. SensorScheme’s procedures and expressions are values stored in
memory cells and have no size limitation other than the interpreter’s address
space.

Conclusion We reviewed the difference between SensorScheme’s program rep-
resentation and the more common alternative – stack based virtual machines.
For the different kinds of functions performed, as instructions or otherwise,
SensorScheme’s program representation is both simpler and more versatile than
the use of virtual machine instructions. The multitude of instructions on VM
platforms, usually 256 or less, is reduced to just seven primitive expressions
and a variable number of primitive procedures. Additionally, the structure of
SensorScheme programs – passing parameters to functions, the order of com-
putations and the end of procedures – all express the operation of a program,
without being explicitly encoded in instructions, as is the case for virtual ma-
chines. Subsequently, SensorScheme uses just a single type of variable store – the
environment, compared with a wider variety in object-oriented and stack-based
VMs.

The causes pointed out above contribute to SensorScheme’s suitability for
WSN platforms: its simplicity of design enables a compact implementation.
Evaluations later in this chapter will further evaluate this hypothesis. The
question remaining from these observations is whether the simplicity of Sensor-
Scheme’s runtime environment will have advantageous or detrimental effects for
the runtime speed and memory use, which we will also address in this chapter.

6.9.2 Configurability

SensorScheme interpreters can be configured by a user by choosing the set of
primitive procedures included in the interpreter installed on sensor nodes. Simi-
larly, when using a VM design, virtual machine instructions can be made config-
urable, as Maté shows. Maté supports the customization of its virtual machine
– to make it ‘application-specific’ [LGC04] – through the use of a configuration
file stating all the instructions supported. Different configurations are associ-
ated with different source languages, and may contain language-specific instruc-
tions, as well as hardware platform specific instructions. Maté uses a byte-code
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instruction format, allowing at most 256 different instructions. For optimal ef-
ficiency and code size, it is customary to specify exactly 256 instructions, for
example by including multiple constant loading instructions. Selecting the set
of instructions in a configuration therefore is a manual undertaking. Further-
more, the source language’s compiler requires knowledge of the selected set of
instructions to properly compile a program.

SensorScheme’s primitive selection procedure is fully automated and implicit
in the module file used to compile an interpreter. Primitives correspond directly
to procedure calls in the program text, so no explicit support is needed from
the compiler to generate calls to the primitive procedures.

6.9.3 Memory safety

Virtual machines and interpreters provide a virtualized execution environment,
restricting memory access only to valid locations, and controlling I/O opera-
tions. Additionally, each value is annotated with a type tag, both in memory
and during communication, and used by primitive procedures to check for validly
typed operands. Together, this protects the underlying hardware from buggy
or malicious programs. Virtual machines like the Java VM or Maté by them-
selves are not completely secure; only verification by static analysis of code can
guarantee this level of safety.

The Java platform defines a byte-code verification process needed to ensure
memory safety. Java’s byte-code verification is a check for certain invariants of
the program code that needs to take place before the program is run. Byte-code
verification is a computation and memory intensive process beyond the capa-
bilities of low power sensor nodes. Resource-lean Java platforms (such as those
on mobile phones) use offline verification and cryptographic code signing. This
in turn requires a cryptographic library in place on the Java runtime platform
and a key-exchange and validation infrastructure.

Java’s need for byte-code verification arises from the fact that instruction
and method arguments on the stack need to be of the appropriate type and
number to ensure safety. It is not trivial to infer the code locations where those
arguments have been placed on the stack, hence the need for a separate process
to verify this invariant.

SensorScheme’s execution model obviates the need for verification or code
signing. All operations in the interpreter check the data type of its arguments
and do not depend on the type and structure of data that it does not check
right before execution. For example, SensorScheme’s call mechanism collects
procedure arguments into a list that is checked for the proper length during
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procedure and primitive calls. Furthermore, SensorScheme’s dynamic typing
forces explicit checks on the proper argument types of procedure arguments.

6.9.4 Memory and data types
The design of SensorScheme is based on a simple memory model and type
system, where all memory is allocated as equally-sized cells. Compared to a
more extensive type system such as Java’s this has certain advantages as well
as drawbacks.

Strings and numbers

SensorScheme’s type system does not include a character or string data type.
While this may seem an undesirable omission, the application scenarios do not
require the use of strings. In places where unique identifiers are needed, symbols
suffice. The absence of a display on the devices removes much of the need
for manipulation of characters or strings on sensor nodes. A lack of string
manipulation functionality reduces the binary footprint of the interpreter.

SensorScheme uses 31-bit integers as the only numeric data type. Smaller
numbers are stored as 13-bit small numbers for memory-efficiency. Still, only
31-bit arithmetic is used for both the large and small integers. SensorScheme
does not make use of floating point arithmetic. Again, the presented application
scenario’s do not require the use of a more extensive set of numeric data types.
The simplicity of the presented design makes it possible to keep the implemen-
tation within limits of the used hardware platforms, and enables the use of the
simple and efficient memory allocation techniques used.

Structs or Objects

SensorScheme does not include any compound data types except the pair, used
to construct lists. As mentioned earlier, it is possible to write an object system
closures, and the SensorScheme distribution contains one. The presented exam-
ple applications do not, however, have great need for this, so we have omitted
examples of its use.

Arrays vs. lists

Probably the most important omissions from SensorScheme’s type system are
arrays. The behavior of these can be implemented using linked lists, but at the
extent of slower access times of O(n), with n the list index of the accessed value,
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instead of O(1) for arrays. Program memory in sensor nodes is limited, so n
will never be very large, thus limiting the maximum access time.

The use of linked lists may also consume more memory than when arrays
are used, especially when the arrays in use have a fixed size, known at compile
time. When the number of items to store in an array is variable, reallocation of
a larger array size may be needed, which temporarily increases memory use to
more or less double the array size, and adds computation time for reallocation
and copying. Compared to algorithms that incrementally increase the size of
an array or list, the use of linked lists is not necessarily slower and consuming
more memory, but depends on its pattern of use: how many reallocations do
occur, what is the size of the array.

We have shown in the example programs in Chapter 5 that algorithms using
linked lists are a natural fit to WSN applications. The applications repetitively
append a list with a single item, and traverse the entire list once before discard-
ing it.

Naturally, linked lists may also be used in virtual machines, for example by
creating a Java class Pair. These Pair objects will, however, use more memory
than SensorScheme’s pairs, as a result of Java’s architectural requirements (such
as a reference to an object’s class).

Code size

The use of expressions as linked lists rather than instruction arrays will similarly
have a negative effect on the size of program code in memory. Flash program
memory is, however, not the most restricted memory in WSN platforms. (The
programs in appendix B do occupy only a small portion of the 16 KB available.)
Additionally, SensorScheme’s lack of strings and user-defined types reduce code
size by not including type definitions and string literals, which are present in
Java runtime platforms.

Automatic memory management

Platforms that ensure memory safety will need to include an automatic memory
management mechanism. Some form of garbage collection is used for the various
Java platforms as well as SensorScheme and other embedded Scheme or Lisp
implementations (as opposed to reference counting in use by the Python lan-
guage). While a wide variety of garbage collection algorithms exist [WJNB95],
all have in common that runtime performance is linked to the amount of mem-
ory available. In situations where a large fraction of total available memory is
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permanently in use, after a garbage collection, only little memory is free and
garbage collection will occur again frequently. This may happen when a pro-
gram stores large data structures or keeps cached information. SensorScheme
dynamically allocates all internal interpreter data, including environments and
stack frames, and is particularly reliant on free memory to achieve good runtime
performance. Other systems with high allocation rates, such as the Darjeeling
Java VM [BLC09] dynamically allocate stack frames, and execution speed will
thus be similarly sensitive to the free space available.

Symbols

SensorScheme uses symbols as a primitive data type, inherited from the Scheme
language. Symbols serve as unique, static identifiers shared by the entire net-
work. This is an important asset in any distributed system, needed to access
resources that are shared by devices or accessible by other devices. Symbols re-
main semantically meaningful across communication, and are used as identifiers
of data or code on remote nodes: symbols are used as protocol tags, identifying
program code to be executed on arrival of the message.

In the same way, symbols play a role in linking different parts of a program.
Programs refer to procedures and data through symbolic names, rather than in-
memory addresses. When dynamically loading programs, some form of symbolic
linking of program parts (or modules) is required. The module-loading WSN
operating systems described in Chapter 2 use some form of symbolic linking
between modules.

While symbols are identifiers with a textual representation, SensorScheme’s
implementation of symbols have only a numeric representation on the nodes in
the network. This way, symbols take up as little as 10 bits in network represen-
tation and only 16 bits in memory, which makes symbols a suitable data type
for all of its roles.

6.9.5 Conclusion
SensorScheme’s design is focused on simplicity, evident in the small type set of
data types supported. The use of pairs and symbols to represent code, instead
of arrays of instructions makes the interpreter smaller and more simple. Still,
the design easily scales to larger platforms when required in the future. Memory
safety can also be guaranteed better. SensorScheme’s compact design does have
potential drawbacks in terms of increased computation time and memory use,
but these are not likely to cause significant effects in WSN applications.
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Chapter 7

Communication

In the previous chapters we have discussed the design of SensorScheme with
regard to the way it represents and executes programs, and shown how to use the
language and execution environment to build sensor network applications. Until
now, we have, however, left out a description of the communication mechanisms
employed by SensorScheme.

This chapter describes ObjectStreams, the communication mechanism for
the Sensorscheme platform. It has been designed to serve the communication
needs of the platform to transport program code as well as application data.

ObjectStreams is itself not a communication protocol such as the routing
and transport protocols described in Section 2.5.1. Instead it builds on commu-
nication protocols for wireless sensor networks such as broadcast, tree collection
or dissemination protocols as we have reviewed in Section 2.5. It is a mecha-
nism to transport SensorScheme data structures in serialized form in a stream of
multiple packets using the transport mechanisms of these routing and transport
protocols.

In line with SensorScheme’s goals, ObjectStreams is a communication ab-
straction designed to simplify the task of writing WSN applications by minimiz-
ing the amount of code to write, and abstracting from protocol- and platform-
specific details.
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(define-handler (demo-msg sensor-val lst)
2 (blink sensor-val))

4 (bcast (msg demo-msg (sense-mag) ’(1 2 3 4 5 6 7 8))))

Listing 7.1: broadcast example program

7.1 Requirements and use

We start this chapter with a review of our communication method in the way
we have used it in Chapter 5. Subsequently we present in this section a number
of properties and requirements that enable implementation of the presented
method on WSN platforms.

The example applications have shown already that sending a message is
similar to a remote procedure call. Some minor adjustments to the syntax (by
defining macro’s) make the definition of a message handler akin to a regular
procedure, and transmitting a message similar to calling that procedure. The
contents of a message are the arguments to the call of the remote procedure.

The listings in Chapter 5 showed the use of primitive bcast to broadcast
messages, also shown in Listing 7.1. (In fact, bcast is not a primitive, but a
wrapper procedure around primitive send-local, but for simplicity we assume
here that it is.)

Procedure bcast takes only one argument, which is the message to commu-
nicate. All examples use macro msg to construct a message.

(msg msgsym value1 . . . valuen)

==>

(list (quote msgsym) value1 . . . valuen)

Macro msg expands to create a message, which is a regular SensorScheme list
headed by a symbol – the message type symbol msgsym, followed by content
value1 to valuen.

The msg invocation in line 4 above macro-expands to

(list (quote demo-msg) (sense-mag) ’(1 2 3 4 5 6 7 8)).

Evaluation of this expression yields the following list:
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(demo-msg 15 (1 2 3 4 5 6 7 8))

where sensing the magnetometer through (sense-mag) produces the value 15.
ObjectStreams broadcasts this list as a message to all neighbor nodes. Upon

reception these nodes all produce an identical copy of the transmitted list in their
own memory.

For each message that arrives the Sensorscheme interpreter handles the mes-
sage as described in Section 5.3. The message’s message type symbol demo-msg

refers to a message handler on the local device.
The message handler definition, define-handler, is another macro, and ex-

pands as follows:

(define-handler (demo-msg sensor-val lst)
. . .)

==>

(define (demo-msg src sensor-val lst)
. . .)

As the expanded definition shows, a message handler is a regular proce-
dure. The macro-expansion introduces the additional parameter src, that binds
to the sending node’s id when called. The handler’s other formal parameters
(sensor-val and lst) will bind to the message’s contents (15 and (1 2 3 4 5 6 7 8)).

In effect, handling a message is identical to a call to procedure handle in
Listing C.1:
(define (handle src msg)
(apply (eval (car msg)) (cons src (cdr msg))))

where msg is the received message list, and src the id of the node that broadcast
the message.

Communication primitives (such as send-local) return a boolean indicating
the error status of the communication. When the operating system reports that
the transmission has not been successful #f is returned, and #t otherwise.

As Chapter 6 described, SensorScheme programs are represented as Sensor-
Scheme values: compound structures built from pairs containing other pairs or
symbols and other primitive types. Such programs are themselves valid Sensor-
scheme values and may be transmitted in an Objectstreams message. The In-
jection phase described in Section 6.1 uses this method to inject a message into
the network. It wirelessly transmits a program to a node as the contents of a
message with message type symbol inject-handler. All nodes contain a primi-
tive procedure called inject-handler that is the message handler for a message
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containing a program. It evaluates the program in the message content to start
its execution, according to the procedure described in Section 6.5.3.

Requirements
To realize ObjectStreams’ behavior described above we define the following re-
quirements for its design and implementation:

Encode messages
Messages take the form of values in memory with recursive references to
other values. Packets transmit as their payload an array of bytes. Simi-
lar to the external representation (see Section 6.4) Objectstreams uses a
network representation to encode the message into a sequence of bytes.

Multi-packet messages
The content of an ObjectStreams message is not bound to a maximum
size, and the length of a message, as it is encoded in network represen-
tation may exceed the size of a single packet transmitted by the radio
hardware. In particular, SensorScheme programs are large enough to re-
quire transmission in multiple packets. WSN operating systems provide
a communication interface that only deals with single packets, the size of
which is determined by the radio hardware. ObjectStreams needs to make
sure that a message transmitted in multiple packets arrives correctly on
the receiving side: it must preserve the order in which the packets were
sent, and detect if any of the packets were lost and optionally request
retransmission.

Blocking operations
The description of Sensorscheme communication above described the op-
eration of communication primitives as a blocking operation: When a pro-
gram calls send-local the primitive returns only after the transmission
has been completed, either successfully or with failure. This is in con-
trast to the event-based interface of WSN operating systems (at least
those without native support for threads). We have argued in Section 4.4
that blocking communication is preferable to event-based interfaces for
the conciseness and readability of programs, and therefore ObjectStreams
uses blocking communication. When messages are transmitted in multiple
packets, the communication primitive must return only after all packets
have been sent. In-between those transmissions, other operating system
as well as SensorScheme tasks may run.
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Multiple communication protocols
Wireless Sensor Networks require the use of more than a single communi-
cation protocol, for different modes of communication. Simple broadcast,
collection along a routing tree, dissemination from the gateway into the
entire network are examples of these, and applications may need one or
more of these simultaneously. ObjectStreams is not itself a transport or
routing protocol, it is an application level mechanism to facilitate commu-
nication for SensorScheme programs using any of these protocols.

The following sections describe the techniques and mechanisms used to put
these requirements into effect.

7.2 Design
The ObjectStreams communication mechanism consists of three parts. Each
will be described in its own section below.

Serialization into network representation
ObjectStreams transports SensorScheme values across the wireless net-
work. Values are encoded into network representation – a serialized, flat
encoding to be carried in one or multiple network packets discussed in
Section 7.3.

Multi-packet sequences
Messages may be carried in a sequence of packets. Correctly decoding the
entire message requires all transmitted packets in the original order. Sec-
tion 7.4 describes the packet header information and processing required
to ensure this.

Communication primitives and protocols
ObjectStreams is a general communication abstraction used to make lower-
level communication protocols available to SensorScheme programs. Sec-
tion 7.5 discusses how SensorScheme’s communication primitives provide
that crucial connection.

7.3 Serialization
ObjectStreams transforms the list that represents a message into a network
representation by serializing the values in the list as a sequence of bytes. The
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my-msg pair        pair large       pair

 98765
  small         small

   18       -1

pair

   234       null

(a)

(b)

(c)

(my-msg (18 . -1) 98765 234)

( S 53 ( N b 18 S 03 N n -1 ) N d 98765 N w 234 )

( S ( N 53 b S N n 18 03 -1 ) N d N w ) 98765 234(d)

Sunday, 28 June 2009

Figure 7.1: Encoding of values into network representation

byte sequence is put into one or more packets, each filled to their maximum
payload size, or with as many bytes as are left at the end of the sequence.
When the packets arrive at a receiver, it reconstructs the message as a list of
values in memory.

Figure 7.1 shows an example of the method of encoding values. We will
describe the encoding process in reference to this example Figure 7.1 (a) shows
the internal representation of a message in memory, and figure 7.1 (b) its external
representation. The message is a SensorScheme list, with header symbol my-msg
and three values. The first value is a pair containing two small numbers, denoted
as an improper list (using the dot notation described in Section 6.4).

Figure 7.1 (c) and (d) show ObjectStreams network encoding, where instead
of characters separated by whitespace, it uses a compressing encoding, emitting
tokens and single bytes according to the algorithm in figure 7.2. In this nota-
tion symbol my-msg is replaced with its numeric representation – 53. (Only the
numeric representation is present inside the interpreter, not the symbol’s string
representation.)

Figure 7.2 shows the encoding algorithm in pseudo-code that uses matching
on the type of the value to define the operations performed in the main encoding
routine – encode – and the auxiliary procedures encode-num and r-encode.
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data Value = Pair l r | Symbol s | Num n | Null
data ValToken = ‘(’ | ‘)’ | ‘S’ | ‘N’
data NumToken = ‘n’ | ‘b’ | ‘w’ | ‘l’

encode (Null) = emit (‘(’), emit (‘)’)
encode (Pair l r) = emit (‘(’), encode (l), r-encode (r)
encode (Symbol s) = emit (‘S’), emit-bytes (s, 1)
encode (Num n) = emit (‘N’), encode-num (n)

r-encode (Null) = emit (‘)’)
r-encode (Pair l r) = encode (l), r-encode (r)
r-encode (s) = emit (Int), encode (Symbol dot), encode (s)

encode-num (−23 ≤ n < 23) = emit (‘n’), emit (n mod 4), emit (n / 4)
encode-num (−27 ≤ n < 27) = emit (‘b’), emit-bytes (n, 1)
encode-num (−215 ≤ n < 215) = emit (‘w’), emit-bytes (n, 2)
encode-num (−231 ≤ n < 231) = emit (‘l’), emit-bytes (n, 4)

Figure 7.2: Algorithm for encoding of values into a token sequence.

Tokens encode which one of four possible types of data is encoded next, after
which the actual data follows.

The message in Figure 7.1 is a list, and encode matches on the Pair clause.
It emits an opening bracket token:(, the first token in Figure 7.1 (c). It then
proceeds encoding the symbol my-msg, emitting subsequently an ‘S’ token (S in
Figure 7.1 (c)), and a single byte containing the numeric value of the symbol –
53. Encoding continues to the right-hand side of the first pair using r-encode

Figure 7.1 (d) shows the result of serializing the example message into a
sequence of 13 bytes. The individual bytes are surrounded by thick black lines.
Encoding of both tokens and single- or multi-byte numbers proceeds in a manner
similar to a technique in compression algorithms such as LZ77, part of the
Zip compression program [ZL77]. Tokens are encoded using 2 bits, and four
subsequent tokens are put together in a single byte. Bytes containing tokens
alternate numbers in a single byte or more.

Encoding of values and filling packets proceeds in a streaming fashion: the
value is traversed and tokens emitted until the packet’s payload section is filled,
or the entire structure is encoded. When a packet is filled before the entire
structure is traversed, the current state of encoding is stored as a continuation
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(see Section 5.9) of the encoding process, to be used at a later moment when
encoding can resume. When the next packet is available (this may be the
same packet buffer after transmission has finished) the encoding continuation
is resumed, and the encoding process continues, storing emitted tokens in the
new packet.

Similarly, receiving nodes decode the contents of a packet sequence on a
per-packet basis. During decoding, the encoded tokens are read from the packet
payload, and the encoded message list is created by automatically allocating
values as needed. When a message encoding uses multiple packets, at the end
of each packet (except for the last packet of the sequence), the current decod-
ing state is stored in a continuation, to be resumed when the next packet in
the sequence arrives. When the last packet of the sequence is received, Ob-
jectStreams returns to the interpreter the message contained in the packets as
a SensorScheme list. When not all packets in the sequence are received af-
ter a certain time-out, the continuation of the packet last decoded is removed.
SensorScheme’s garbage collection process will reclaim the cells in the partially
received message.

The network representation is able to encode tree-structured data only.
When cycles exist in the message content, or multiple references to the same
pair, this structure cannot be encoded. In case of cyclical data structures,
the encoder will produce an infinitely long message as it continues to traverse
the circular structure. Applications using ObjectStreams should avoid sending
cyclical data structures.

Note that the encoding and decoding operations described above are light-
weight both in memory use and computational requirements: During encoding,
each value is only inspected once: the total number of values, and hence mes-
sage size is not known prior to encoding; furthermore, the encoding and de-
coding operations ensure that only a single packet buffer is needed during both
transmission and reception, to store or retrieve the values communicated; and
finally, the maximum number of cells allocated during reception never exceeds
the number of cells in the value structure sent.

7.4 Packet Sequencing

As the previous section described, ObjectStreams carries its payload in a se-
quence of packets. Receivers of this packet sequence must be able to recognize
all packets belonging to the same sequence, and process them one by one, in
order, without missing packets or duplicates. Additionally, nodes may receive
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multiple streams simultaneously, possibly even from the same sender. The Ob-
jectStreams protocol defines a packet header format designed to take care of all
of this, while being compact enough to introduce only marginal overhead. The
encoded value structure can have arbitrary complexity and size, and its size can
therefore not be found except by traversing the entire structure. The stream
of packets containing the value structure encoding therefore does not contain
information regarding the total number of packets it consists of; it is a stream
of packets, marking only its start and end.

ObjectStreams payload is carried in a stream of packets. Objectstreams is
implemented with TinyOS 2 and uses the TinyOS 2 Packets as the underlying
protocol layer. TinyOS 2 Packets make use of a packet buffer that contains a
header and payload, and is transmitted as a single unit by the radio hardware.

Besides TinyOS’s header fields 〈 source address, destination address, packet
length 〉 ObjectStreams defines three header fields: a start flag a, a stop flag z
and a packet number m – implemented as a fixed-bit-width number of b bits
(current implementations use either a 6 or 14-bit packet number). The start flag
marks the start of a stream, and is set only on the first packet of the stream.
Similarly, the end flag is set on the last packet of a stream. The packet number
is used to track the order of packets in a stream. Every subsequent packet in
the stream contains a packet number mi+1 = (mi + 1)mod 2b, until the last
packet, which is marked with the stop flag.

The tuple 〈 packet number, source address 〉, called a packet ID, uniquely
defines every individual packet. Only retransmitted packets use the same packet
ID; otherwise no two packets with the same packet ID should be alive in the
network at any moment. When a packet is received and processed at its desti-
nation it is no longer active and a packet with the same packet ID is permitted
again. Packets can remain active for a longer duration because of buffering or
caching at either the source or destination node, or on any intermediate node
in the case of multi-hop link models.

Multiple streams between the same sender and receiver can be active at any
one time, alternating packet transmissions. Streams are numbered S0, S1 ... Sn,
each of which consists of packets p0, p1 ... pm. To minimize the probability of
duplicate packet IDs active in the network, the packet number of a stream’s first
packet is initialized to the packet number of the most recently sent packet from
the stream last created at the same node minus a number n(mod 2b), where n
is greater than the number of packets the network can buffer.
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Figure 7.3: Position of ObjectStreams in the protocol stack
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interface SSSender {
2 ...

command ss_val_t eval(am_addr_t *addr);
4 command error_t send(am_addr_t addr, message_t* pkt, uint8_t *dataEnd);

event void sendDone(message_t *msg, error_t error);
6 }

8 interface SSReceiver {
...

10 event message_t* receive(message_t* msg, am_addr_t addr,
uint8_t *data, uint8_t *end);

12 }

Listing 7.2: NesC interfaces for SensorScheme communication primitives

7.5 Communication primitives

The SensorScheme interpreter takes care of the serialization and sequencing
described above, given a message as a SensorScheme list on the one hand, and
packets on the other hand. Communication primitives connect the interpreter
to an underlying communication protocol.

As we have shown already, SensorScheme supports simultaneous use of mul-
tiple communication protocols, each implemented using its own set of primitives.
It is possible to support any of the wide variety of protocols developed for wire-
less sensor networks reviewed in Section 2.5 by configuring the interpreter to
include the primitives that implement access to these protocols.

SensorScheme distinguishes different kinds of primitives. Besides the primi-
tives described in Section 6.6 SensorScheme uses sender and receiver primitives
for ObjectStreams communication. The SensorScheme interpreter accesses these
primitives using the interfaces SSSender and SSReceiver, shown partially in Listing
7.2. Communication protocols may consist of both a sender and a receiver prim-
itive, or only one of these, depending on the mode of communication. When
nodes use a protocol only to send data outside the network, or to receive from
outside the network, only either a sender or receiver primitive is needed. For
example, the protocols used to inject programs into the network support only
a receiver primitive, since nodes will only receive data from these protocols. A
single communication protocol implementation may also provide multiple sender
or receiver primitives. The SensorScheme implementation of the TinyOS 2 Col-
lection protocol provides both a send-parent and a send-gateway primitive, each
for a different mode of communication using the protocol’s routing tree.

In TinyOS 2, protocols typically expose the Send, Receive and Packet inter-
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interface Send {
2 command error_t send(message_t* msg, uint8_t len);

event void sendDone(message_t* msg, error_t error);
4 ...

}
6

interface Receive {
8 event message_t* receive(message_t* msg, void* payload, uint8_t len);

}
10

interface Packet {
12 command void clear(message_t* msg);

command uint8_t payloadLength(message_t* msg);
14 command void setPayloadLength(message_t* msg, uint8_t len);

command uint8_t maxPayloadLength();
16 command void* getPayload(message_t* msg, uint8_t len);

}

Listing 7.3: NesC interfaces for low-level communication

faces (see Listing 7.3) to send and receive using the particular protocol and
access the protocol’s payload inside packets. See the TinyOS packet protocols
documentation for a more detailed description of the communication process
[Neta].

When a SensorScheme application calls a sender primitive it invokes the
primitive’s SSSender.eval function, similar to a call to a SSPrimitive.eval. The
function returns a message to be sent to the interpreter. The SensorScheme
interpreter captures a continuation at this point in the application’s execution,
where it is resumed after the message transmission has finished.

ObjectStreams now allocates a new packet from a memory Pool and encodes
this message into the protocol’s payload area provided by the Packet interface.
When the packet is filled, ObjectStreams calls SSSender.send, which instructs the
primitive to call Send.send to transmit the packet, and stores the application’s
computational state and the packet encoding state as a continuation.

Sending packets is a split-phase process, where Send.send only schedules a
packet transmission and returns immediately, and the Send.sendDone event is sig-
naled after the transmission has either succeeded or failed. The sender primitive
in turn calls SSSender.sendDone which resumes the encoding process, and sends
subsequent packets.

When the message has been fully encoded and all packets are sent, the
the interpreter resumes the SensorScheme application by invoking the saved
continuation, supplying it either a success or failure return value.

When a lower-level communication protocol receives a packet, the protocol’s
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receiver primitive signals the SSReceiver.receive event to notify ObjectStreams
of its arrival. ObjectStreams gathers all incoming packets and decodes them
as they are received. As long as a message has only been received partially
Objectstreams saves the decoding state in a continuation and keeps it until the
next packet in the sequence arrives and continues decoding it. When the entire
message has arrived, the interpreter finds the proper message handler procedure
to further process it.

As an illustration of the use of ObjectStreams, we finish this section with
descriptions of two example ObjectStreams transmission protocols, that we use
in chapters 5 and 9 to implement and evaluate the example applications of
Chapter 3.

7.5.1 Broadcast

The first ObjectStreams protocol implementation is positioned directly on top
of the TinyOS 2 Active Message protocol to broadcast streams to other nodes
within reach of the wireless connection (see figure 7.3 (b)). It uses unidirec-
tional communication, to preserve the low cost of broadcast interactions between
nodes. The sending node just broadcasts the stream’s packets in sequence, with-
out retransmissions.

When a broadcasted message is comprised of just a single packet, neighbor
nodes just receive the packet, decode its contents – which produces a message
in memory, and process the message with the appropriate message handler.

In case a message consists of multiple packets, a receiver must detect when
a message has been lost, and decode each message directly as it arrives. The
alternative strategy of buffering the packets until the last one has arrived will
occupy multiple packet buffers in memory and is therefore not used.

Receivers can recognize the first packet in a sequence by a set start flag and
subsequent packets by their subsequent packet IDs. Receivers detect missing
packets by the arrival of another packet in the sequence or the absence of any
more packets in the sequence after a certain time: After three packets have
been received, if packet five arrives it means packet four has not been received.
Similarly, if after packet three no more packets arrive within a set time limit (one
second in the current implementation) the next packet in the sequence has been
lost. The packet sequence ends when a packet with the end flag arrives. When
a packet in the sequence is lost, the message cannot be properly decoded, so the
entire message is discarded, and not delivered to the SensorScheme application.

Each packet is decoded immediately as it arrives, and its packet buffer made
available for the arrival of other packets. Decoding the packet proceeds in
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reverse order of the encoding process, traversing the payload to find the tokens
and numbers each packet consists of. As the tokens and numbers are decoded,
the message structure is built in memory. When decoding reaches the last byte
in the packet, and more packets follow in the current stream, the decoding
state is recorded in cell memory along with the packet ID. Upon receiving the
next packet in the sequence, decoding the message continues using the recorded
decoding state, and so on, until the last packet has beed received.

Note that it is possible for a node to receive multiple messages simultane-
ously. For each of these messages the node allocates a sequence record, sets a
timer, and stores the partially received message and decoder state. All of these
data structures are allocated from the value cell pool, putting no restrictions
on the number of simultaneously received messages, or the size of the message
contents, except for the total amount of memory available in the cell pool.

The broadcast ObjectStreams protocol is the most straightforward Object-
Streams protocol. It does not retransmit lost packets, or buffer packets in
the network, which may cause out-of order delivery. Nodes can send only one
message at a time, starting a new sequence only after the previous has been
completely transmitted. The bit-width b of the packet number header field can
be small. This implementation uses a 6 bit packet number, making the total
Objectstreams header just a single byte in size.

While straightforward, this implementation’s lack of packet retransmission
and buffering makes the protocol suitable primarily for broadcasting small, usu-
ally single-packet messages. Section 9.3 evaluates the performance of the in-
truder detection scenario using the bcast communication primitive, comparing
it to other published implementations.

7.5.2 Reliable tree collection

The second implementation uses the Collection protocol in the TinyOS 2 distri-
bution [Netb] to forward stream packets across multiple hops to a collection root
(see figure 7.3 (a)). This implementation makes use of intermediate buffering
and retransmissions to guarantee delivery of the entire stream.

The Collection protocol establishes a routing tree and assigns a parent to
every node, which is a nearby node within communication reach. For the pur-
pose of the collection protocol, nodes only communicate with their parent node.
Encoding and decoding of messages and packets proceeds similar to the broad-
cast protocol described above. The ObjectStreams tree collection protocol uses
a reliable transmission protocol to ensure all data will eventually arrive at the
tree root. When a packet is transmitted, the receiving parent node immediately

140



7.6. DISCUSSION

sends an acknowledgement message back to the sender. Our current implemen-
tation does this using the hardware acknowledgements of the IEEE 802.15.4
standard [IEE06]. When the sender does not immediately receive an acknowl-
edgement, it assumes unsuccessful reception, and reschedules the same packet
for transmission. When after three retransmissions a packet still has not been
received, the node reselects a parent and attempts to send the entire message
again.

Using this protocol, a message can be lost only in the case of a failing parent
node, or lack of buffer memory to receive a message. When the transmission
rate stays below the network’s bandwidth capacity, reception failure due to
insufficient buffer memory is very unlikely to happen.

Unlike the broadcast protocol, sending a message can take a considerable
time, during which new messages may be available for transmission. Multiple
messages may be sent concurrently, and the packet numbers of these packets
must be disjoint. The bit width of the packet number header field b of this
implementation is therefore chosen to be 14 bits, which makes the total header
size 2 bytes.

The evaluation of communication in Section 9.3 tests the performance of
reliable tree collection protocol in the environmental monitoring application
scenario.

7.6 Discussion

This chapter described ObjectStreams, a communication abstraction for wireless
sensor networks for communicating messages of larger size than a single packet
payload. As the application scenario implementations in Chapter 5 suggest,
the need exists to communicate more data at once than fits in a single packet.
In current WSN platforms, it is common practice to construct communication
protocols communicate using individual messages as provided by the underlying
radio hardware, without the aid of an abstraction layer especially developed for
communicating large payloads in multiple packets.

ObjectStreams facilitates communication of arbitrarily complex and large
data. ObjectStreams is not a communication protocol, but an application-
layer transport mechanism that can be used in combination with a multitude
of communication protocols, which we have reviewed in Section 2.5. It serves
to quickly and easily include communication in programs.

As a communication mechanism designed to communicate language-level val-
ues, ObjectStreams bears similarity to neighborhood abstractions such as Hood
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[WSBC04] and abstract regions [WM04]. ObjectStreams is more versatile, how-
ever, as it permits transmission of more complex data structures and multiple
communication patterns and protocols.

The combination of functionality provided by ObjectStreams is unique for
WSN platforms. The need to provide applications with communication mecha-
nisms larger than or independent of physical packet size is recognized. The Rime
[Dun07] protocol stack for the Contiki WSN OS includes the Rudolph protocol
that communicates messages of up to 1024 bytes in size, split into multiple pack-
ets. Additionally, Contiki contains the uIP protocol, a minimal implementation
of the TCP/IP protocol stack [Dun05], and both TinyOS and Contiki have im-
plemented the 6LowPAN IPv6 protocol [HC08]. Both Rudolph and TCP do
not provide the level of functionality that ObjectStreams does, however. First,
TCP is intended for a symmetric bidirectional connection, whereas wireless
sensor networks employ mostly asymmetric connections such as broadcasting
or tree-collection or dissemination, where TCP cannot be used. Furthermore,
the Rudolph protocol uses only a single transmission and reception buffer on
a sensor node, which means that only a single multi-packet transmission can
be in progress at any one time. For applications such as the intruder detec-
tion scenario which uses a neighborhood gossip protocol, this is not a suitable
solution. In contrast, ObjectStreams is able to simultaneously receive multiple
multi-packet messages.

To address the limitations of TCP in the context of wireless sensor networks,
transport protocols have been developed [WDLS06]. Some of these address the
issue of reliably sending a stream of packets an perform retransmissions when
necessary. Rather than being an alternative to ObjectStreams, these protocols
are complementary: These protocols still provide a packet interface to applica-
tions whereas ObjectStreams translates application-level values into sequences
of packets. Furthermore, transport protocols concern themselves with conges-
tion control and retransmissions, something not covered by ObjectStreams.

The second part of ObjectStreams’ functionality is communication of language-
level data structures. We use a form of object serialization, a technique common
for so-called managed platforms, such as Java, or Python where this is called
pickling. Such platforms use serialization or picking when objects need to be
stored on disk files or communicated. Within the WSN platforms only the Perk
[Cor08] Java platform for WSNs uses a similar communication mechanism. It
uses Java’s serialization to communicate.

ObjectStreams combines both its parts – multi-packet messaging and seri-
alization – into a combined whole, optimized specifically to efficiently commu-
nicate SensorScheme programs and application data.
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Chapter 8

Macro-programming by
program specialization

This chapter describes an extension to the SensorScheme platform that enables
macro-programming a network of heterogeneous WSN nodes using a technique
called program specialization. We will demonstrate this technique with an im-
plementation of the smart office application scenario.

We start this chapter with a re-iteration of the smart office scenario (see
Section 3.4), and define it more precisely, after which we outline a solution and
further describe the SensorScheme extension that is the subject of this chapter.

8.1 Smart office scenario

The smart office scenario uses electrical appliances containing wireless sensors
and actuators such as light switches, radiator valves and infrared presence detec-
tors. Together, these devices make up a wireless sensor and actuator network
used to control both manually and automatically the devices in every office
room. Our main goal is to devise a method to administer this network effi-
ciently in the face of changes to the devices’ configuration.

A building manager places devices of different types on one of the building’s
floors using a floor plan as shown in Figure 8.1. A database stores the devices
– their location and types – according to the schematic entity relation diagram
in Figure 8.2. Additionally, the database contains descriptions of all rooms in
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light switch
IR detector
temperature sensor
window open detector
light controller
radiator controller

Figure 8.1: Floor plan for use in the scenario

Type
TypeID : num
(sensors): bool
- switch
- temp
- window
- irpresence
(actuators): bool
- light
- radiator
- thermostat

Node
NodeID : num
TypeID : num
Floor, X, Y : num

Room
RoomNr : num
Walls : Coordinates

Figure 8.2: Entity Relationship diagram for database
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(ssmodule office-constants
2 (require "thesis-base.ss")

(provide types-tbl nodes-tbl rooms-tbl)
4 ; Types alist with key TypeID and values

; (sensors): switch temp window irpresence
6 ; (actuators): light radiator thermostat

(define-const types-tbl
8 ’([1 . (#f #t #f #f #f #f #f)]

[2 . (#f #f #f #f #f #t #f)]
10 [3 . (#t #t #f #f #f #f #f)]

[4 . (#f #f #f #f #t #f #f)]
12 ))

14 ; nodes alist with key nodeID and values:
; typeID coordinates (floor X Y)

16 (define-const nodes-tbl
’([10 . (1 (4 7 11))]

18 [15 . (2 (4 9 12))]
[93 . (3 (5 8 1))]

20 [45 . (4 (5 10 6))]
))

22
; rooms alist. columns : room nr, bounding coordinates of room

24 (define-const rooms-tbl
’([4006 . (4 (0 9) (8 14))]

26 [4010 . (4 (8 9) (11 14))]
[5010 . (5 (8 9) (11 14))]

28 ))
)

Listing 8.1: Constants derived from database

the building by its bounding coordinates.
A single generic program, shown in Listing B.5, controls the operation of

all devices in the network. This network-wide generic program is to be com-
piled together with the constant declarations in Listing 8.1 obtained from the
configuration database. The generic program contains a number of auxiliary
functions followed by conditional definitions, one for each kind of sensor or ac-
tuator. In the program fragment, the definitions specific to temperature sensors
and radiator controllers are shown.

From this generic program, each device receives a specialized variant of this
application, depending on its unique node identifier ‘id’. We call this process
specialization. For a radiator controller device (for example node no. 15) spe-
cialization yields the following program (identical to Listing B.5 lines 83-84):

(define-handler (report-temp-hdl val)
2 (adjust-temp (- (room-temp 15) val))))
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Using the data obtained from the database it is possible to statically de-
termine that the node is a radiator controller (i.e., (node-is-radiator id) must
return a #t value), and that it is not a temperature sensor ((node-is-temp? id)

must return #f). The specialized program consists of only the two-line handler
definition report-temp.

Similarly, for temperature sensor device no. 10, specialization results in this
program (derived from Listing B.5 lines 61-79):

(define collect-ls ())
2 (define-handler (collect-temp-hdl rn val)

(if (= rn 4006)
4 (set! collect-ls (cons val collect-ls))))

6 (define (sense-temp-loop t)
(call-at-time (+ t (* 16 60)) sense-temp-loop)

8 (when (= 10 (max collect-ls))
(send 22 (msg report-temp-hdl (average (map rest collect-ls))))

10 (send 23 (msg report-temp-hdl (average (map rest collect-ls)))))
(set! collect-ls ())

12 (bcast (msg collect-temp-hdl 4006 (temp-sensor))))

14 (sense-temp-loop (now))

As expressed in this program, temperature devices in the same room peri-
odically sense and broadcast the temperature (in a collect-temp message), which
they collect into a list – collect-ls. One of the devices in each room (the one
with the highest id) averages the measurements, and reports the result to all
radiators in the room, which are numbers 22 and 23 in this case.

8.1.1 Effects of specialization
The two examples above show some of the possible effects of specialization:

• Some expressions are replaced with their results if the results are known
– that is, can be proven to always evaluate to the same value. The call to
function room-of on line 63 of Listing B.5 can be statically determined given
the configuration constants declared in module office-constants (Listing
8.1) and the function definition.

• Conditional expressions around definitions ensure that only those defini-
tions that are used by a device will be included in its specialized program.
Note that the conditional definitions use a normal if expression, in con-
trast to for example the use of the #IFDEF macro in C/C++. In these
cases the conditional statement’s predicate expression must be a known
expression.
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• The list traversal and subsequent conditional statement in lines 71-74 of
Listing B.5 specialize to multiple (two in our example) expressions. Ex-
pression for-each iterates over the result of the known function nodes-in-room,
which can be determined from the configuration constants (with obvious
result). The list of controlled devices is known statically during special-
ization, and the for-each expression can be replaced by concrete calls to
send to each of those devices.

• The constant definitions from the configuration database are removed from
the specialized program, as well as accessor functions and other definitions
not referred to in the specialized program. Omission of unreferenced pro-
gram parts is a major cause of the size reduction that specialization can
achieve.

8.2 Partial evaluation

The program specialization described in this chapter is implemented as an ex-
tension to the SensorScheme platform, and works by applying partial evaluation.

According to Jones et al. [JGS93] partial evaluation is a program transfor-
mation which optimizes a program with respect to its invariant input data. To
our partial evaluator, the invariant input data consists of constants defined in
the program and literal values, including a device’s unique id.

In contrast to most uses of partial evaluation, where it is used to speed up the
running time of an application, the goal for our partial evaluator is to produce
short programs that take up little memory and can be transmitted to the target
node efficiently.

Our partial evaluator takes a generic, network-wide SensorScheme program,
and specializes it for a node. The result of is a SensorScheme program specialized
for a single node, that is subsequently transferred and deployed to the intended
node. The process may be repeated to specialize a program for all nodes in the
network.

The method described here makes some changes in the analyzer process of
the SensorScheme tool chain described in Section 6.2.1. In addition to finding
used definitions the compiler will specialize the definitions in a program with
respect to the node identifier to which the program belongs. The specializa-
tion process transforms the initialization expressions and recursively all global
definitions. During specialization, new definitions may be created.

The specialization extension introduces a new primitive expression define-const
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to the SensorScheme interpreter definition in Section 6.5.1, which extends the
global environment with named constants: immutable values that may be used
by the partial evaluator to specialize a program.

8.2.1 Definition

The program specializer described in this chapter extends the functionality of
the analyzer process described in Section 6.2.1. It syntactically transforms the
procedure definitions in a source program and all its required library modules
into more specialized procedures where possible, before performing the step of
finding all definitions used in the specialized procedures.

The program structure of the specializer mirrors the evaluator defined in
chapter 6, consisting of a specialization function SE analogous to eval (or E)
in Listing A and a function SA specializing applications, analogous to apply (or
A). The difference is that whereas functions E and A evaluate an expression
with the purpose to obtain a result value and perform side effects, functions
SE and SA merely transform an expression into an equivalent but simpler one
that, when evaluated, will perform the same operations and produce the same
results as the original expression. This difference is expressed in the notations
of E and SE: where E may perform multiple actions separated by semicolons
and produce a result (with ‘return’), SE expresses its transformation through
the operator =⇒, analogous to the definition of macro’s in Section 5.2.10.

Variables and environment

G = Ginit ∪ {id 7→ id}

During the transformation process, the specializer has access to a global envi-
ronment G, similar to the evaluation process. The global environment G is
initialized with a set of initial bindings Ginit such as primitive procedures, and
the device’s identifier id, bound to the device’s id number. Programs may use
the node’s id number to compare it with some constant value, typically as part
of the predicate part of an if expression.

Again, mirroring the evaluation process, specialization function SE accepts
as argument the local environment ε. Both environments G and ε bind vari-
able names to the values these variables will be bound to during evaluation: if
the value bound to a variable is a constant known at specialization time, this
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constant value binds to the variable. Otherwise, when the value bound at run-
time is not constant or cannot otherwise be determined by partial evaluation, a
variable binds to the special value ⊥.

Literals

SE(expr, ε) when(number? expr) |
(boolean? expr) |
(null? expr)

=⇒ expr

SE((quote l i t e ra l), ε)
=⇒ (quote l i t e ra l)

Just like evaluation function E, SE operates depending on the type and
structure of its input expression expr. In the simplest case, when expr is a lit-
eral value, no transformation needs to take place, and SE produces the original
expression expr.

Variable references

SE(expr, ε) when(symbol? expr)
let v = ε[expr] if expr ∈ ε

G[expr] if expr ∈ G
error otherwise

=⇒ v if (constant? v)
expr otherwise

Variable references may specialize to produce the value bound to the referred
variable. For a variable that is bound to a known constant value, a variable refer-
ence transforms into the value the variable is bound to. Otherwise, if a variable
is bound to an unknown value ⊥, no transformation takes place.

Conditionals

SE((if pred conseq alt), ε)
let v = SE(pred, ε)

=⇒ SE(alt, ε) if v = #f
SE(conseq, ε) if (constant? v)
(if SE(pred, ε) SE(conseq, ε) SE(alt, ε)) otherwise

Conditionals specialize to either the consequent or alternative expression if the
predicate can be reduced to a constant. If not, a complete conditional expression
is returned, in which its subexpressions may be more specialized.
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Definitions

SE((define var value), ε)
G← G ∪ {var 7→ ⊥} ;

=⇒ (define var value)

SE((define-const var value), ε)
G← G ∪ {var 7→ SE(value, ε)} ;

=⇒ (define-const var value)

Top-level variable and constant definitions create new bindings in G. A non-
constant definition define creates a binding that is mutable at runtime, and
binds to ⊥ during the specialization process. A constant definition define-const

creates a binding to a constant value that can be retrieved during specialization
with a variable reference.

Assignments

SE((set! var value), ε)
=⇒ (set! var SE(value, ε))

Reassignment of both local and global variables represents a side-effect and must
occur at runtime. Specialization does not transform the set! primitive expres-
sion.

Lambda expressions

SE((lambda (var1 . . . varn) expr1 . . . exprm), ε)
let ε∗ = ε ∪ {var1 7→⊥} . . . {varn 7→⊥}

=⇒ (proc ε (var1 . . . varn) SE(expr1, ε∗) . . . SE(exprm, ε∗))

Specialization of a lambda expression produces a procedure, which captures the
current local environment ε, and specializes the lambda expression’s body ex-
pressions using an environment extended with the procedure variables var1 . . .
varn bound to ⊥. When this lambda expression is used in an application, its
body expressions will be specialized again according to the application rules
defined below.

SE((proc εc (var1 . . . varn) expr1 . . . exprm), ε)
=⇒ SE((lambda (var1 . . . varn) expr1 . . . exprm), ε)

In the case of nested lambda expressions, for example as a result of the use of
let expressions, the specialization rules may cause the inner lambda expression
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to be evaluated multiple times. During specialization, procedure expressions
are treated as a re-evaluation of a lambda expression. Re-evaluation may result
in a more specialized procedure if the environment contains additional constant
values rather than bindings to ⊥, as a result of any of the application roles
following below.

Procedure calls

SE((fn arg1 . . . argn), ε)
=⇒ SA(SE(fn, ε), SE(arg1, ε) . . . SE(argn, ε))

If the expression to specialize is not any of the previous primitive expressions,
the expression is an application. Analogous to the execution of applications,
function SA specializes the application of a function fn on its arguments arg1
. . . argn.

Apply

Function SA distinguishes a number of following cases outlined below:

Primitive application

SA(prim, arg1 . . . argn) when (primitive? prim)
=⇒ prim(arg1, . . . , argn) if (constant? arg1) & . . . & (constant? argn)

(prim arg1 . . . argn) otherwise

Primitive applications may be specialized to a single constant. When all
of the arguments to the application have been specialized to a constant value,
the primitive is applied directly to the arguments, producing a constant value.
Otherwise, the expression is not specialized further.

Call elimination

SA((proc εc (var1 . . . varn) expr1 . . . exprm), arg1 . . . argn)
when (constant? arg1) & . . . & (constant? argn)

let ε∗c = εc ∪ {var1 7→ arg1} . . . {varn 7→ argn}
=⇒ SE(exprm, ε∗c) if (constant? SE(expr1, ε∗c)) & . . . &

(constant? SE(exprm, ε∗c))

Similarly, procedure calls may be simplified to a single constant when the result
of an application is fully known. When the arguments to a call as well as its
body expressions all evaluate to known values, the application reduces to only
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the constant return value of the last body expression.

Lambda application

SA((proc εc (var1 . . . varn) expr1 . . . exprm), arg1 . . . argn)
let ε∗c = εc ∪ {vari 7→ argi} . . . , if (constant? argi)
let var∗1 . . . var∗k, arg∗1 . . . arg∗k = non− constant vars and args

=⇒ ((proc εc (var∗1 . . . var∗k) SE(expr1, ε∗c) . . . SE(exprm, ε∗c)) arg∗1 . . . arg∗k)

Application of anonymous functions reduces to an application with possibly
fewer arguments k, k ≤ n of a more anonymous function, having parameters
var∗1 . . . var∗k. If some argument in the application is known to be constant,
it is included in the local environment ε∗c and removed as an argument, along
with its corresponding procedure parameter. Other, non-constant arguments,
and their corresponding variables are included in the remaining function.

Constant procedure application

SA(fn, arg1 . . . argn) where G[fn] = (proc εc (var1 . . . varn) expr1 . . . exprm)
let ε∗c = εc ∪ {vari 7→ argi} . . . , if (constant? argi)
let var∗1 . . . var∗k, arg∗1 . . . arg∗k = non− constant vars and args
let fn∗ = fn annotated with {vari 7→ argi} . . .

G← G ∪ {fn∗ 7→(proc εc (var∗1 . . . var∗k) SE(expr1, ε∗c) . . . SE(exprm, ε∗c))} ;
=⇒ (fn∗ arg∗1 . . . arg∗k)

Similarly, application of procedures bound in G to variable fn specializes to an
application with possibly fewer arguments. Specialization returns an expression
applying its arguments to a new variable, formed from the original variable fn,
annotated with bindings of those variables that receive constant arguments, to
their constant values. This new variable is bound in G to a procedure obtained
from the procedure bound to fn with possibly fewer free variables.

8.2.2 Mutability

SensorScheme makes use of the set! primitive expression to modify variables
both in the local and global environment. To handle assignments properly, the
specializer engages in some code analysis during specialization not represented
in the definition above: when specializing lambda or constant procedure ap-
plications all procedure parameters are checked for the possible occurrence of
assignments involving any of its parameters. Any variable that is assigned to
binds to ⊥ instead of possibly the known value of its corresponding application
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(define-const nodes-in-room (quote (9 17 22 23 30)))
2

(define-const radiatorNodes (quote (22 23 35)))
4

(define-const sense-temp-loop
6 (lambda (t)

(call-at-time (+ t (* 16 60)) sense-temp-loop)
8 (for-each (lambda (n)

(if (member n radiatorNodes)
10 (send n (msg report-temp ...))))

nodes-in-room)))
12

; library definitions
14 (define-const for-each

(lambda (fun list)
16 (if (not (null? list))

(begin (fun (car list)) (for-each fun (cdr list))))))
18

(define-const member
20 (lambda (x list)

(if (null? list) #f
22 (if (eq? (car list) x) #t (member x (cdr list))))))

Listing 8.2: Fragment of example scenario program

argument.
Data structures are considered not mutable to our specializer. The only data

structures SensorScheme uses (besides procedures) are pairs. Primitive opera-
tions set-car! and set-cdr! are not permitted in the context of the specializer.

For top-level variables bound in G, its occurrence in a set! expression is
illegal if the variable was defined as a constant (using define-const). Top-level
variables – defined using define never bind to known values, and therefore are
never subject to specialization.

Top-level function definitions must be declared as constants using define-const.
lambda expressions are considered constant values as well, and are therefore al-
lowed value bound to top-level constants. Although variable function definitions
using define are allowed, they will not be subject to specialization.

8.3 Operation

In this section we will again use the smart office application scenario to show
the operation of the specialization method.

Listing 8.2 shows a fragment of the program given in Listing B.5. The
function sense-temp-loop is part of the program to be executed by temperature
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sensors. We have made it somewhat simpler (replacing a call to nodeInRoom with
a constant table with the result of the function, and a call to node-is-radiator

replaced by a membership check of table radiatorNodes), but it is identical in
intent.

While processing this program the specializer encounters the following frag-
ment

(member n radiatorNodes)

and start specializing it by replacing the constant references (and specializing
those) like this:

1 ((proc {t,n} (x list)
(if (null? list) #f

3 (if (eq? (car list) x)
list

5 (member x (cdr list)))))
n (quote (22 23 35)))

We have written the local environment as a list of variables within brack-
ets. Next is specialization of the only body expression of the proc expression,
using the extended environment {t, n, x, list=(quote (22 23 35))}. The if ex-
pression’s predicate is a primitive call yielding #f, causing only the alternative
part to be specialized. The complete specialization, after evaluation of the
primitive calls (car list) and (cdr list) results in this specialized expression:

((proc {t,n} (x)
2 (if (eq? 22 x) #t

(if (eq? 23 x) #t
4 (if (eq? 35 x) #t

#f))) n))

This call was created from a call to a globally defined constant member, specialized
on its list parameter. So instead, the specializer creates a global function,
annotated with the specialized parameters and its values, and with just one
parameter left:

(define-const member<list=(quote (22, 23, 35))>
2 (proc {t,n} (x) ... ))

and replace the original call with:
(member<list=(quote (22, 23, 35))> n)

In fact, each call to member specializes to a call to a newly created specialized
function. We have in-lined these functions here for readability.

After specializing only a small part of our program, we can already see some
of the consequences of specialization. Even though our goal was to minimize
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program sizes, specialization of the member function results in a longer function
than the original. If we were to use a longer radiatorNodes list, the specialized
function would increase in size proportionally. The program does, however, not
depend anymore on radiatorNodes, since all its information is now encapsulated
in the specialized member function.

Specializing the sense-temp-loop proceeds similarly. The recursive calls to
for-each create new versions specialized to the tails of nodes-in-room. For each
item in the list, this produces a call to

(proc {t} (n)
2 (if (member<...> n)

(send n (msg report-temp ...))))

with the list item as argument. For each of these the call to member<...> resolves
to either #t or #f, including resp. excluding the send call from the final function.
The final result, as stated earlier is the following:

(define-const sense-temp-loop
2 (lambda (t)

(send 22 (msg report-temp ...))
4 (send 23 (msg report-temp ...))))

8.3.1 Post-processing
In fact, this is not exactly the code specialization produces. After partial evalu-
ation of the program, we employ a post-processing step to produce the resulting
program presented above. Post-processing is responsible for a number of trans-
formations to reduce the size of the final program:

To start with, proc expressions are transformed into regular lambda expressions
that my appear in SensorScheme programs.

Next, specialization of top-level functions produces new, annotated and spe-
cialized versions of the original function. Many of these are referred to in a call
only once or even not at all in the final program. Those referred once are in-lined
at their call site, and those unreferenced removed from the final program.

Finally, some trivial simplifications: ((lambda () a ((lambda () b c)))) trans-
forms to ((lambda () a b c)).

8.3.2 Program size
This chapter has shown how partial evaluation as a method of program special-
ization can be used to generate short, device-specific programs. Partial eval-
uation, however, is known to cause significant growth of program sizes, a fact
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we can also observe from the description above: ‘loop unrolling’ of recursive
functions (our member and for-each functions) specialized witch respect to long
lists may create excessively long programs, far longer than the original, unspe-
cialized one. The specialized member functions are, however, not part of the final
program, and therefore have no impact on the total program size.

The particular setting in which we use the technique does result in small
programs. Even though networks may be very large, up to hundreds of devices,
every individual device interacts with only a small number of others. The con-
figuration tables may grow very large, and intermediate specialization functions
proportionally so. When carefully constructed, the final program is proportional
in size to only the peers a device interacts with directly.

8.3.3 Discussion

The goal of writing a single network-wide program for wireless sensor networks
to better facilitate application development and management has received much
research attention already (see Section 2.6.3) Its aim is to allow users to more
easily deal with the inherently distributed nature of WSN applications by lifting
communication and concurrency operations to the language level. These systems
are, however, intended for homogenous wireless sensor networks, where all nodes
perform the same task and contain the same program.

Our work has most in common with the snBench [BBKO05] RuleCaster
[BK06] ATaG [BPRL05] and Titan [LRST07] systems. In all of these, applica-
tions are modeled as ‘task graphs’ where graph nodes represent tasks or com-
putations, and edges represent the flow of data between tasks. The goal then
is to subdivide a network-wide task graph into sub-graphs which can each be
placed on different devices. The edges connecting the distributed sub-graphs
transport their data transparently over the wireless network. The major chal-
lenge for these systems is to find a division of the application graph resulting in
low energy consumption and high communication reliability.

While some similarities are immediately apparent (automatic division of sin-
gle program into node-specific smaller ones; the use of graph or tree structures
to represent and transform programs), a number of important differences exist
as well: the program structure of interconnected tasks is more limited than the
Scheme platform we use: no globally mutable state accessible by multiple tasks
exists, and the graphs are acyclic in nature, disallowing feedback loops and other
program control flow.

Another major difference is that where task graphs are split implicit network
communication is added to the deployed application. Because communication
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is one of the major consumers of scarce energy, the particular division strategy
has high impact on the network’s performance and life time. Our method does
not introduce any implicit communication into the program.

Probably the most prominent difference is that our method explicitly takes
into account the difficulty around management of large networks, where many
nodes perform somewhat similar tasks. Our method provides a straightforward
way to separate the general functionality from the node-specific configuration.

Partial evaluation for Scheme-like systems is a well-researched topic. In fact,
Scheme is the language of choice for some of the most extensive work on partial
evaluation, such as Jones et al.’s [JGS93] comprehensive description of the topic.
In fact, the most powerful and complete partial evaluators such as MIX [JSS89],
Similix [Bon91], Schism [Con93] and Fuse [Ruf93] use some form of Scheme as
both their implementation and transformation language.

The use of the SensorScheme platform requires our partial evaluator to work
in the presence of mutable variables. Most research on partial evaluation em-
ploying Scheme-like languages operates on a subset of Scheme or an extended
λ-calculus instead of a practically used language, as the above-mentioned sys-
tems do. To accommodate partial evaluation, SensorScheme is modified by
adding global constant definitions and allowing only immutable pairs.

We make use of an online partial evaluator with polyvariant specialization
according to Ruf’s definitions [Ruf93] and employ many techniques described
in the same work. The major difference (and technical novelty) to Ruf’s online
partial evaluator is our method of specializing and annotating global function
calls.

Our use of partial evaluation – namely to reduce program size, instead of
focusing on increasing speed of computation – is novel (to the best of our knowl-
edge), and may seem somewhat counter-intuitive. A well-known effect of partial
evaluation is explosion of program size. The typical use of partial evaluation in
the application context does make this unlikely to happen. The use of partial
evaluation we discussed in this chapter aims to fragment a program and a –
possibly large – set of constants into a small specialized program.
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Chapter 9

Evaluation

This dissertation presents a wireless sensor network platform. We presented a
broad goal for this platform by describing the characteristics and limitations
of the hardware used (Chapters 2 and 4), and its intended functionality by
way of a number of example application scenarios to be implemented on this
platform (Chapter 3). We subsequently proposed a platform design (Chapters
6–8), and presented implementations for these application scenarios (Chapter
5). This chapter evaluates how the SensorScheme platform meets the stated
goals by measuring performance characteristics of the example implementations
and comparing them to the state of the art.

9.1 Computation and energy efficiency

Wireless sensor network platforms have limited computational resources to meet
the demands of cost and form factor as we described in Chapter 2. Sensor-
Scheme incorporates design decisions that potentially consume more resources
than otherwise needed. This section determines whether SensorScheme is able
to meet the tight resource budgets of WSN platforms, considering the following
measures of efficiency:

1) Interpretation causes a slowdown in program execution compared to ex-
ecuting native processor instructions. To what extent do interpreted Sensor-
Scheme programs cause significant delay in program execution, and consume
significant energy during the longer program execution?

2) Low power sensor nodes contain only little memory. Memory consumption
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of SensorScheme programs should stay within the limits of the available memory.
How well is the SensorScheme platform is able to meet the demands

The following sections present measurements performed with the Sensor-
Scheme implementation described in Chapters 6 and 7. We have not included
experiments that directly compare SensorScheme’s performance against other
WSN platforms, for a number of reasons. First, the TinyDB and Maté platforms
have been written for older releases of TinyOS version 1, and it has proved im-
possible to execute these applications reliably on WSN devices due to software
bugs. Performing experiments to compare their performance to SensorScheme’s
has therefor not been possible.

Second, many of the platforms and applications comparable to SensorScheme
were written for different hardware platforms, with different CPU characteristics
(8-bit vs. 16 bit, Harvard vs. von Neumann architecture) and wireless network-
ing standards (See Table 9.5). With the current state of WSN hardware and
software platforms, porting an application to run on a different platform than it
was written for is a complicated and time-consuming task, as applications are
often written with the hardware characteristics of the platform in mind.

But most importantly, the different platforms and applications each have
different characteristics and limits to the programs they can execute. This
makes it impossible to write the ‘same’ program for each platform. For example,
TinyDB supports a more limited range of queries than SSQuery or SwissQM.
Furthermore, these platforms use different algorithms, communication protocols
and data structures to implement these queries. Direct comparisons of this kind
do not gain additional insight into individual performance characteristics. We
will address this issue more closely in Section 9.3.

9.1.1 Execution performance

The interpreted nature of SensorScheme imposes an execution overhead in com-
parison to native code, which causes increased energy use on wireless sensor
nodes. To quantify this overhead we have performed two measurements: a
micro-benchmark to quantify the increased execution time of interpreted Sensor-
Scheme programs, and an application test run to measure the energy spent for
the execution of SensorScheme programs.

Microbenchmark

We have measured the computation time of a number of simple test cases in
SensorScheme, by repeatedly executing them in a tight loop, and compared it
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()

(+ n n)

(* n n)

(rand)

(list 1 2 3 4 5 6 7 8 9 0)

(dummy)

(dummy 1 2 3)

(bcast (msg m n))

0 1000 2000 3000 4000

nesC cycles total gc cons

SensorScheme nesC
Total cycles % gc. % cons cycles fraction

1 () 2557 14% 30% 25 102:1
2 (+ n n) 837 13% 30% 8 105:1
3 (* n n) 945 15% 30% 64 14.8:1
4 (rand) 455 12% 32% 123 3.70:1
5 (list . . . ) 2377 18% 32% 204 11.7:1
6 (dummy) 370 17% 24% 13 28.5:1
7 (dummy 1 2 3) 1072 17% 27% 26 41.2:1
8 (bcast . . . ) 3565 14% 27% 267 13.4:1

Table 9.1: Results of interpretation overhead measurements
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to native execution speed of the same operations programmed in nesC.
All tests were performed using a MSP430 processor emulator that accurately

counts the clock cycles per instruction. Table 9.1 shows the results of these
measurements.

For every test we have measured the total number of instructions to execute
the test 1000 times in a loop for both the SensorScheme and nesC programs.
From this we calculate the average number of cycles spent executing each test
once, shown as ‘total’ resp. ‘nesC cycles’ in Table 9.1. We furthermore measured
the number of instructions spent in SensorScheme for allocating memory cells
(‘cons’) and the cycles spent executing the garbage collector (‘gc’).

• () : The first test case measures the running time of the loop itself, rep-
resenting a simple case of flow control.

• (+ n n), (* n n) : Cases two and three perform simple (addition) and more
complex (multiplication) arithmetic operations.

• (rand) : Case four calculates a more complex native procedure, random
number generation.

• (list 1 2 3 4 5 6 7 8 9 10) : Case five tests dynamic memory allocation.
It tests a call to malloc and free in the nesC program.

• (dummy), (dummy 1 2 3) : Cases six and seven evaluate the overhead of func-
tion calls resp. without and with parameters.

• (bcast 1 2 3 4 5 6 7 8 9 10) : The last test case measures the cost of com-
munication.

The results show that more complex operations, such as executing long se-
quences of native code (cases 3 and 4) impose less overhead than simple arith-
metic operations and control flow (cases 1 and 2). Furthermore the results
suggest that SensorScheme’s uniform memory lay-out results in comparatively
cheap memory allocation (case 5) and that function application is a relatively
inexpensive operation compared to other flow control (cases 6 and 7).

All test cases spend a similarly large fraction of time for garbage collection
and memory allocation – approximately 15% and 30%. SensorScheme’s eval-
uation process involves allocation of cells for the call stack and environment,
incurring a significant runtime cost. This quickly consumes all memory, after
which a garbage collection cycle is necessary, which again frees up most of the
allocated cells.
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These results are not unlike those reported for other virtual machines. For
example, Maté reports execution slowdown of 3.4 - 33 × for operations such
as arithmetic and I/O operations. Interpreted languages for desktop systems
have similar performance characteristics. The online benchmark “The Computer
Language Benchmarks Game” [sou09] shows median execution speed ratios of
C vs. some interpreted languages of 13:1 (PLT Scheme : C) to 78:1 (Ruby : C)
1.

Application performance and energy use

The next experiment uses the two-hop intruder detection application shown in
Listing 5.5 to obtain an insight in the computation time and energy use of a
real application.

The test uses a TOSSIM simulation network of 20 nodes and an additional
node that is simulated in our MSP430 processor emulator also used in the previ-
ous test. In this test we measure the computation time and number of messages
sent and received to calculate the energy spent in a single period – the time
between subsequent calls to time-loop. All time and energy calculations assume
running this program on a network of Tmote devices (see table 2.1.6) at 8 MHz.
Power consumption data is based on the data sheets of the hardware compo-
nents.

Table 9.1.1 (a) lists some results of the per period running time. For each
such period, the SensorScheme code takes only 156 ms execution time. With a
period of 5 seconds this is just three percent of the period duration. While we
may assume that the same program written in nesC will execute in far shorter
time, SensorScheme’s slower execution time does not slow down the application
as a whole.

Similar to the micro-benchmark test, a large fraction (about 57%) of ex-
ecution time is spent on memory allocation and garbage collection. Garbage
collection itself causes application pauses of only 10 ms, an acceptable delay for
most WSN applications.

Communication takes a significant fraction of the total energy use on WSN
nodes. Table 9.1.1 (b) shows the number of messages sent and received per
period, and the energy spent on computation by the OS, based on estimations,
and the energy use of the radio during sending and receiving. (Before sending,
the radio needs to power up taking an additional 3 ms, included in the air time.)

1The single core x86 benchmark of October 12 2009: http://shootout.alioth.
debian.org/u32/benchmark.php?test=all&lang=all&lang2=gcc&box=1
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(a)

cycles ms mJ
Execution time and energy
TinyOS 156636 20 0.16
SensorScheme 1245483 156 1.27
Fraction spent in allocation 25.2%
Fraction spent in GC 31.4%
– # collections 6.43
– execution time / collection 7.6 ms
– avg. used cells 395 cells
– max. used cells 429 cells

(b)

Comm. energy TX RX total
neigh-msg 2.5 11.6 msgs
message size 324 352 bits / msg
air time 11 51 62 ms
radio energy 0.29 1.96 2.25 mJ

(c)

Total energy used
TinyOS execution 0.16 mJ 4.3%
SensorScheme execution 1.27 mJ 34.5%
Radio TX / RX 2.25 mJ 61.1%
Total 3.68 mJ

Table 9.2: Execution statistics of intruder detection application
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Finally, taking these three sources of energy use together, table 9.1.1 (c)
shows the relative cost of each of those. It shows that most energy is used by
the radio power during communication (61 %), while SensorScheme execution
time takes 34.5 % of the total energy spent. The same program written in nesC
may result in an energy reduction of no more than 34.5%.

We have not taken into account other sources of energy use which are in-
dependent of the execution platform, such as MAC protocol overhead (idle lis-
tening) and sensor readouts, which only reduce the fraction of energy used by
program interpretation.

9.1.2 Conclusion

SensorScheme performs well enough to be used in real WSN scenarios: in-
creased energy consumption due to interpretation is only moderate. Depending
on the application context, this energy consumption increase may well be a
price worth paying to benefit from Sesorscheme’s architectural characteristics.
Moreover, the current SensorScheme implementation is a prototype which may
be improved in several ways to gain a better execution or energy performance.
As an example, a significant portion of execution time is spent on memory man-
agement activities, both allocation and garbage collection. Future versions may
reduce this cost and make SensorScheme more energy efficient.

9.2 Program size and complexity

Besides the computation and energy performance described above, a crucial
metric for WSNs are the size of applications and the SensorScheme interpreter.
SensorScheme application size is relevant as this determines the energy cost and
duration of reprogramming nodes on one hand, and because it occupies the very
limited available memory of sensor nodes.

Code complexity

We start this section by taking a closer look at the environmental monitoring
scenario. This is a frequently-used scenario that has been the focus of a number
of platforms described in the state of the art. We compare a number of im-
plementations that use a distributed query to express the data to be obtained
from the network as we described in the environmental monitoring scenario in
Section 3.2:
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15%

15%

22% 17%

32%

ROM (48K)

Interpreter
std
net
collection
Cells

75%

12%

2%
1%10%

RAM (10K)

configuration bytes in ROM bytes in RAM
Interpreter 15522 1066
std 8286 90
net 10680 228
collection 7150 1206
Cells (1878 cells) 7514 (1912 cells) 7650
Total 49152 10240

Table 9.3: Thesis-base memory use with different sets of primitives
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Application external repr. network repr. internal repr.
(bytes) (bytes) (cells)

sensor-blink 337 41 39
eval 3209 575 587
intruder-single 2410 318 328
intruder-twohop 2503 396 411
monitoring 1147 186 194
ssquery 3474 306 303

Table 9.4: Program sizes of the application scenario implementations in each of
the three used program representations.

TinyDB
[MFHW03], an early implementation of this scenario;

QueryVM
[LGC04], using the Maté virtual machine to execute queries;

SwissQM
[MRD+07] A more recent platform using a specially-developed virtual
machine to evaluate event monitoring queries.

SSQuery
SensorScheme’s implementation discussed in Section 5.8.

All these applications perform roughly the same function, albeit using quite
different strategies. We compare the sizes of source code and compiled binary
images, which are an indicator of the complexity of the applications. While
code size is not a very accurate indicator for the complexity of a program, it
gives a coarse indication of the complexity of the SensorScheme implementation
compared to other, similar applications.

Table 9.5 shows the measurements for these applications. The measured
applications are built for a number of different platforms, and for different ver-
sions of TinyOS, as shown in the second column of the table. This makes the
data more difficult to compare. The third column shows the number of lines
of code in the "app.c" file produced as an intermediate stage of the TinyOS
compilation process. It contains all source code that is to be compiled into the
binary image (as C code, instead of nesC, which is the source language of the
OS and applications), containing the application, library and operating system
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Application Operating system app.c ROM RAM
& Platform lines of code (bytes) (bytes)

TinyDB TinyOS 1, Mica2 19157 60078 2629
QueryVM TinyOS 1, MicaZ 19778 70730 3639
SwissQM TinyOS 2, TMote 25812 49110 4679
SSQuery TinyOS 2, TMote 21990 41994 2590
SSQuery TinyOS 2, MicaZ 17743 54984 2834

Table 9.5: Binary image size of a number of implementations of the distributed
database querying application

code. The last two columns contain the ROM and statically allocated RAM
sizes of the compiled binary image.

Data for SSQuery is shown twice, once compiled for the TMote hardware
platform and once for MicaZ. Both compile a SensorScheme interpreter with
primitives included from the modules std, network and collection, required to
run the SSQuery program. We will discuss the SensorScheme configuration
in more detail in Section 9.2. These numbers do include the code size of the
SSQuery program as an injection message (in network encoding) in ROM, which
will be loaded when the devices start up.

The data in Table 9.5 indicates that the SensorScheme implementation is
somewhat smaller than the other implementations. SSQuery for the TMote
platform uses about 85% of the ROM. Similarly, The SSQuery for the MicaZ
platform is about 77 % of the QueryVM implementation and 92 % of the size
of TinyDB. Still the SensorScheme implementation is more flexible: The capa-
bilities of SSQuery extend beyond those of any of the other implementations as
we have shown in Section 5.8. Furthermore, it is capable of executing not only
the SSQuery program, but all of the programs we have discussed in this work.

Configuration and primitives

SensorScheme interpreters compiled into a code binary are configured to con-
tain a selected set of primitive procedures. All applications in Chapter 5 use
an interpreter with primitives configured in the base module thesis-base (see
Appendix C.1). We have compiled a number of different configurations to as-
sess the sizes of the different primitives, shown in Table 9.3. The SensorScheme
interpreter and ObjectStreams encode and decoder, without any primitives oc-
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cupies about 15KB of ROM. Most of the 1 KB or allocated RAM is used for
a set of communication buffers. All primitives defined in the standard library,
such as operations on base types, and timer, sensor and led access primitives
together occupy another 8 KB. The basic communication routines such as bcast

and the TinyOS communication stack occupy another 10 KB. The collection
module used by the SSQuery application, containing additional communication
primitives based on the TinyOS collection protocol uses an additional 7 KB.
All remaining memory in both Flash ROM and RAM, about 7.5 KB each, is
available for use as allocation cells, used by SensorScheme applications.

Program size

The last data set in this section, in Table 9.4, presents the program sizes of each
of the example programs described in Chapter 5. The program sizes shown are
the result of the selection step in Section 6.2.1 and specialization in Section
8.2. At this stage the program contains only those definitions from the program
module and any module it requires that are referred to in the program. The
external representation contains the program as human-readable source code.
The network representation is the size of the program as an ObjectStreams
message sent into the network to reprogram the sensor nodes. The internal
representation contains the number of cells required to store the program in
memory. These numbers show that even though SensorScheme applications are
compact already in its source format (in external representation) both binary
formats are significantly smaller still. Each of these programs can be transported
into the network in a few hundred bytes.

9.2.1 Conclusion

This section has evaluated several indicators of program size and complexity of
the SensorScheme interpreter and applications written for it.

Our code complexity measurements, comparing SSQuery to other imple-
mentations of the environmental monitoring scenario, show some benefits of the
SensorScheme design: while the code complexity and memory requirements are
lower than other solutions, SensorScheme is able to provide a wider range of
functionality. As an example, SSWQuery accepts any user-written aggregation
function, instead of just a limited choice of a few functions built-in into the
application as does TinyDB. Moreover, the SensorScheme implementation eval-
uated is a generic interpreter, capable of executing other applications besides
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SSQuery, in contrast to the other implementations, which are purpose-built for
a WSN distributed query application.

We have furthermore shown the memory use breakdown of the SensorScheme
interpreter core and additional sets of primitives (see Table 9.4). The results
show that memory consumptions stays within the tight limits of low power WSN
nodes, while leaving enough space for memory to be consumed by applications
running in the interpreter.

Our program size evaluation shows program sizes of the example Sensor-
Scheme programs presented in Chapter 5. Their memory footprint (as internal
representation) stays well within the amount available for SensorScheme pro-
grams, and the network representation is small enough to transfer a program
into the network in just a few seconds, even at the rate of as little as 100 bytes
per second or less, as measured with the Deluge protocol [HC04].

Together these measurements show that the SensorScheme design results in
an implementation suitable for the memory restrictions of WSN hardware plat-
forms. Moreover, while staying within these bounds, SensorScheme’s features
and functionality exceed the state of the art, as the SSQuery implementation
shows.

9.3 Communication

This section evaluates the performance of ObjectStreams described in Chapter 7.
ObjectStreams is itself not a communication protocol but an application-level
communication mechanism. Our simulations do not measure communication
performance parameters such as throughput or delivery ratio as is commonly
the case with evaluations of communication protocols. Instead we compare
alternative implementations using the same protocols, and evaluate the effect
of different communication abstractions on application performance.

ObjectStreams provides a higher abstraction layer for communication, to
easily write communicating applications with few lines of code. A higher ab-
straction level gives less control over the implementation details, and may affect
performance.

Our goal is to evaluate the impact of the use of ObjectStreams to perfor-
mance parameters such as data reception and energy efficiency. We compare
the performance of two of our application scenario implementations – intruder
detection (see Section 3.1) and environmental monitoring (see Section 3.2) – to
previously published alternatives with a similar abstraction level of communi-
cation.
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Our evaluations measure:
1) the impact of the communication abstraction on the number of packets sent
and received by nodes – a measure of energy efficiency, and
2) the data items received by and memory requirements of the application – a
measure of application performance.

We use the TOSSIM wireless sensor network simulator part of TinyOS 2 to
measure the performance characteristics. We have modified the network con-
nectivity model to enable us to measure only the applications’ effect on packet
transmission and reception rates at varying network densities, independent of
the physical parameters of the radio hardware such as bit-rate, transmission
power, antenna characteristics and environment (indoors vs outdoors).

Before discussing the applications to be evaluated, we first describe the setup
of the experiments that follow in Section 9.3.1. We then discuss the evaluations
of the two-hop gossip protocol used in the intruder detection scenario in Section
9.3.2 and tree–routed data collection in Section 9.3.3.

9.3.1 Simulation and communication modeling

Wireless sensor networks consist of (a large number of) nodes, collectively per-
forming a common task. Nodes communicate over a wireless interface with a
broadcast nature: a data transmission of a single node can be received by mul-
tiple other nodes. Not all nodes, however, will be able to receive a transmission,
for reasons such as fading and reflection as a result of the distance between
nodes, obstacles in-between or nearby the sender and receiver, and interference
from other nodes or external sources. As empirical studies show [GKW+02], be-
tween any pair of sender and receiver node there is a somewhat fixed probability
of message reception, that is related to the distance between the nodes, with a
high (but less than 100 %) probability of reception between nearby nodes, and
a low probability (but greater than 0) between distant nodes.

Network model

The experiments described below are conducted using the TOSSIM wireless sen-
sor network simulation framework, part of the TinyOS 2 distribution. TOSSIM
simulates the simultaneous execution of a single nesC application on a network
of devices. The network is modeled as a fully connected graph, with directional
edges, labeled with Pij , the probability of reception between any two nodes.
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The distance-related distribution parameters are taken from an empirical study
performed by Ganesan et al. [GKW+02].

We evaluate our protocols using a simulated network of nodes that run the
algorithms described below. The network consists of a large number of nodes,
placed randomly on a square area of varying size. We obtain the packet re-
ception probability Pij between each pair of nodes from the distance-dependent
Gaussian random distribution in Figure 9.1.

The square area ’wraps around’ at the top and bottom and the sides. Sen-
sor nodes at opposite edges will have just a small distance between them. The
’wrapped’ network mimics a network of infinite size when the node’s transmis-
sion range is much smaller than the area dimensions. We use this method to
eliminate the effects of nodes at the edges with reduced connectivity, and make
the performance characteristics independent of network size. In all of the ex-
periments described we have experimented with networks of different numbers
of nodes, and found the results to be independent of network size.

We perform our simulations with varying network densities, measured as
the network’s connectivity. We define the connectivity of the network as the
average number of other nodes that each node is able to send to or receive from
with reception probability of 50 % or greater. Varying the area size on which
nodes are placed randomly has the effect of increasing or decreasing connectivity.
Connectivity is displayed on the on of the horizontal axes of the graphs in Figures
9.2, 9.3 and 9.5.

All simulations are performed with large networks of 700 nodes, to reduce
the influence of random effects, but extensive testing has shown the results to
be representative of smaller networks as well.

Using the described network model the simulation results are independent
of parameters such as transmission power, receiver sensitivity and separation
between nodes. Similarly, our simulations are independent of timing-specific
parameter parameterizations by making the following assumptions:

• The duration of a packet transmission is modeled to be zero, we measure
only the occurrence of packet transmissions and receptions.

• Our experiments evaluate an application that is periodical in nature. The
duration of these periods is irrelevant, as communication is assumed in-
stantaneous.

• Packet collisions do not occur (and would be impossible with instantaneous
communication).
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Figure 9.1: Random distribution of packet reception probability vs. node dis-
tance generated from communication model. The lines shown are the distribu-
tion means, plus and minus one standard deviation.

Though abstract, these assumptions are realistic for the applications evaluated.
They accurately mimic real networks with very long periods, short packet trans-
mission times and a randomly chosen moment of transmission within each pe-
riod, such that no collisions will occur. When using shorter periods, commu-
nication intensifies and the probability of packet collisions increases. The goal
of avoiding packet collisions coincides with our goal of reducing communica-
tion: reduction of communication results in a proportional reduction of packet
loss, and increased communication results in an increase in packet loss due to
collisions.

Communication model

Our experiments use a communication model based on Ganesan’s empirical data
[GKW+02] that relates inter-node distance to reception probability. Sampling
the mean and standard deviation of the reception rate at various distances
yields probability distributions of packet receptions as a function of transmitter-
receiver distance.

Figure 9.1 shows 300 samples taken from our communication model. It shows
the packet reception rate between pairs of nodes (the black dots) at various
distances between sender and receiver. Additionally, the figure contains lines
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plotting the parameters of our communication model: the distribution mean as
a function of distance, and mean plus and minus one standard deviation.

The communication model is dimensionless on the inter-node distance. This
means that the distance axis scales for different set-ups of networks, depend-
ing on physical parameters such as transmission power, antenna impedance as
well as network density. Still, the reception probability as a function of inter-
node distance will have the same shape. This generic communication model is
independent of physical parameters other than the distance between nodes.

9.3.2 Two-hop gossip

The first test evaluates the impact of ObjectStreams’ multi-packet messaging
on packet reception and memory use in a broadcast setting. We compare a two-
hop gossip application modified from the intruder detection scenario in Listing
5.5 with two alternative implementations that represent a similar effort from
programmers. The alternatives are written for TinyOS 2 and only use commu-
nication and memory management facilities provided by TinyOS 2.

The goal for the three implementations under test is to deliver a single sensor
measurement to all nodes in the 2-hop neighborhood, while minimizing both
the wireless communication and memory use to store or buffer data received
from the network. The applications use only broadcast communication without
retransmissions.

Listing 9.1 shows the SensorScheme implementation we use here. Each round
it broadcasts its own sensor value along with values received from direct neigh-
bors in the previous round in a single message, which may span several packets,
depending on the number of neighbor values to transmit. When a node receives
such a message, it stores the first item – the sending node’s sensor value, to
transmit it in the next round. The other data items in the message are the
sensor values from two-hop neighbors.

Listings 9.2 and 9.3 show code snippets for the alternative implementations.
They use different algorithms to implement the same application. The first
alternative (Listing 9.2, called single-packet) transports a single value from one
neighbor per packet. Upon reception of single hop neighbor data, nodes directly
forward it to their neighbors. This method requires no buffering, at the expense
of broadcasting a large number of small packets. Various implementations exist
of this strategy, among others the n–hop abstract region [WM04].

The second (Listing 9.3, named multi-packet) minimizes communication by
using large statically allocated message buffers. This implementation is similar
to the Rime Rudolph communication protocol [Dun07] (part of the Contiki OS
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(define (time-loop t)
2 (call-at-time (+ t 16) time-loop)

...
4 (bcast (msg neigh-msg (cons id (sense-mag))))

(set! neigh-ls ()))
6

(define-handler (neigh-msg ls)
8 ; add direct neightbor’s data to neigh-ls

(set! neigh-ls (cons (car ls) neigh-ls))
10 (process-neighs (cdr ls)))

Listing 9.1: Communication in SensorScheme implementation

[DGV04]). As nodes receive messages from their neighbors, they store and
buffer data items from their direct neighbors into these large buffers. At the
end of each period they send the content of this message buffer as multiple
packets. During each period nodes are receiving multi-packet messages from
multiple neighbors, and each needs to be stored in a separate message buffer.
The number of message buffers available determines the maximum number of
messages that can be received simultaneously.

All three implementations send data items containing three 16-bit sensor
values (sensor value and two coordinates) and a 16 bit network address. Ob-
jectStreams encodes its payload using 4 × 20 bits to encode four 16 bit integers
+ 4 bits for opening and closing brackets, resulting in 84 bits per neighbor
value. The single-packet implementation always sends a single neighbor value
per packet. Multi-packet uses 4 × 16 bits = 64 bits of payload per neighbor
value.

The experiment simulates all three applications multiple times for networks
of varying densities and with packet sizes between 28 and 120 bytes of payload.
Each simulation run uses a network of 700 nodes for a duration of 20 rounds
and averages the number of packets sent and received per node, the memory
required to receive these packets and the number of two-hop neighbors from
which data is received.

Packets sent and received

Figures 9.2 and 9.3 show the evaluation results of these three protocol imple-
mentations for varying connectivity rates and packet sizes. Figure 9.2 shows the
number of packets sent (on the left) and the packets received (on the right) per
period for each of the three alternatives. The graphs display how the number
of packets sent and received depend on network density. Per round nodes send

175



CHAPTER 9. EVALUATION

1 event PeriodTimer.fired():
packet_t *pkt = BufferPool.get()

3 SensorValToPacket(pkt)
HopOne.send(pkt)

5
event HopOne.receive(packet_t *pkt):

7 ProcessNeighborData(pkt)
HopTwo.send(msg)

9
event HopTwo.receive(packet_t *pkt):

11 ProcessNeighborData(pkt)

Listing 9.2: Single-packet alternative implementation, directly forwarding re-
ceived neighbor values

1 event PeriodTimer.fired():
MultiPacket.send(SendBuffer, SendCount)

3 SendBuffer[0] ={myAddress, sensorVal}
SendCount = 1

5
event SinglePacket.receive(packet_t *pkt, int len) {

7 if isStartPacket(pkt):
s = newSeqRecord(pkt)

9 s.buf = BufferPool.get()
s.rcvPtr = 0

11 else:
s = findSeqRecord(pkt)

13 s.buf[s.rcvPtr:s.rcvPtr+len] = getPayload(pkt)
s.rcvPtr += len

15 if isEndPacket(pkt):
signal MultiPacket.receive(s.buf, s.rcvPtr)

17
event MultiPacket.receive(buffer_t *buf, int len):

19 // senderÕs data in first item
SendBuffer[SendCount] = buf[0]

21 SendCount += 1
for i in 0 .. len :

23 ProcessNeighborData(buf[i])

Listing 9.3: Alternative implementation, using intermediate buffering
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Figure 9.2: Evaluation results of two-hop gossip application: Number of packets
sent (left) and received(right).
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Figure 9.3: Evaluation results of two-hop gossip application: Memory use (left)
and unique data items received (right).
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one data item per direct neighbor and receive all data sent by their neighbors.
The single-packet algorithm represents the worst case scenario with linear

resp. quadratic increase of sent resp. received packets for increasing density.
Note that the single-packet data is independent of packet size. The content per
packet is fixed, which quickly raises the communication needs for more dense
networks.

The multi-packet and ObjectStreams versions can significantly reduce the
number of packets sent and received by sending multiple data items per packet.
The number of packets sent and received depends on packet size: larger packets
require fewer packets to be sent. Communication requirements for multi-packet
and ObjectStreams are similar. Individual neighbor items are packed as 64 bits
(4 16 bit values) in multi-packet and 80 bits for ObjectStreams, a 25 % increase.
ObjectStreams sends on average about 12 % more packets. Similarly, Object-
Streams receives about 5 % more packets.

Memory requirements

A second performance metric is the amount of memory needed by each ap-
plication. Figure 9.3 shows the memory required by each version on the left.
Figure 9.3 (a) does not show the memory requirements of Single-packet, as it
has memory requirements of only a single packet.

The multi-packet version requires multiple message buffers to receive and
store received neighbor data items, one per connection to a neighbor. We calcu-
late the memory required for Multi-packet by multiplying the number of message
buffers and the buffer size required to store all data received in a round. Each
message buffer is the size of one or more network packets.

Figure 9.3 (b) and (c) shows (in the left graphs) the memory required for
both multi-packet and ObjectStreams. We measure the amount of memory
required to store all data received by a node in a single round. The amount
of data received differs per node, depending on the number of neighbors. Our
memory measurements record the memory required to completely store the data
received by the lowest 95 % of nodes; with the amount of memory reported, 5
% of nodes will not have enough memory to store all the packets they are able
to receive.

The graphs show that ObjectStreams requires less than half the memory
required by multi-packet. Even though ObjectStreams stores all received data
as linked lists in memory, still it requires less memory than the pre-allocated
memory buffers required for the Multi-packet version.
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Unique data items

We measure the application performance as the number of unique neighbor
items that each node receives per period. Nodes may receive items from two-
hop neighbors from multiple single hop neighbors, but the intruder detection
application requires data items from a two-hop neighbor only once. Figure 9.3
shows (on the right) the number of unique data items received per period. Their
differences are mostly due to the influence of packet loss. In the single-packet
implementation, when a packet from a neighbor does not arrive, only a single
neighbor value is lost. Using the SensorScheme and multi-packet implementa-
tions, when a packet is not received, the entire multi-packet message it is part
of is discarded, and the data therein is lost. When a message is lost, its first-hop
data is also not available for retransmission, which reduces communication even
further for denser networks.

Concusion

From these results we can conclude that the three implementations behave quite
differently: The single-packet implementation has the lowest memory footprint
and achieves the best application performance (in terms of the number of distinct
data items received). The multi-packet implementation is the most efficient as
far as communication is considered, at the cost of considerable memory require-
ments. In between these two, ObjectStreams operates more energy-efficient
than the Single-packet solution, while requiring less memory to operate than
Multi-packet.

For this particular application we conclude that using SensorScheme and
the ObjectStreams communication mechanism strikes a balance between energy
efficiency and memory required.

9.3.3 Tree–routed data collection
The second evaluation of the ObjectStreams communication method uses a tree
routing protocol to transport data from all nodes in the network to a single root.
The environmental monitoring application described in Section 3.2 assumes this
transport method, and the various implementations such as SwissQM [MRD+07]
and TinyDB [MFHW03] use it as well.

The prime appeal of this method of environmental monitoring is the pos-
sibility of sensor data aggregation, as it reduces communication to a constant
amount of data to be transmitted from every intermediate node of the tree. Ag-
gregation does produce only a summary of the sensed data (such as the average,
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minimum or maximum) instead of the full data set. When this is not desired, in-
termediate nodes need to forward all individual data values received from nodes
higher up in the tree, increasing the traffic load at the bottom nodes. In cur-
rent implementations, such as SwissQM [MRD+07] and TinyDB [MFHW03],
every individual sensor data item is transmitted in a separate packet, which
requires the number of packets to be received by the gateway node to be equal
to the network size. This sheer volume of communication overloads the wireless
medium with only modestly sized networks, and quickly drains the batteries of
nodes lower in the tree.

When all data from the entire network is requested, the data has a high
degree of redundancy, both in time and in space, something that is made use of
in implementations such as TinyDB and SwissQM to cope with the unreliability
and low bandwidth of the wireless network.

Each sensor data packet is sent to the node’s parent node in a best–effort
fashion, without retransmissions in the case of packet loss. The result is that
only a fraction of the sensor data is actually delivered to the routing tree. The
probability of delivery is not equal for all nodes, but depends on the position
in the routing tree. For nodes high up in the routing tree, delivery of its data
takes many individual transmissions, each of which may fail.

To graphically indicate the magnitude of both of these issues, figure 9.4
shows a randomly generated routing tree configuration for a sensor network of
800 nodes. The circles show the locations of the nodes, and the lines between
them indicate a parent link for each node. The tree root is a node in the center
of the figure, colored white. The color of the other circles indicate the end-to-
end delivery probability of each node’s sensor data, ranging from as low as 16
% (in blue) in the outer corners of the network to 100 % for nodes near the root
(in red). The line thickness of the links connecting nodes to their parents are
proportional to the amount of data traveling across it. The connections near
the base of the network carry a heavy load, since these have to transport all
data from higher up in the network.

The SensorScheme implementation of the environmental monitoring appli-
cation addresses this application somewhat differently. Our second query in
Section 5.7 uses an aggregation function fold that folds all received data into a
list, packing the received data in a single large message that may span multiple
packets. Transmission of a single multi-packet message to a node’s parent may
reduce communication significantly compared to individual packets for every
data value, as other implementations do. The sensor values produced by each
node are small, and a concatenated message can contain many sensor values per
underlying packet, reducing the communication load to a fraction of that used
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Figure 9.4: Example of a routing tree configuration for a sensor network of 800
nodes.
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in the current solutions.
The SensorScheme solution further uses the reliable communication protocol

described in Section 7.5.2 to communicate between nodes and their parents.
This reduces the problem of data loss due to long and unreliable links to the
root, and increases data reception to near 100 %.

Our next experiment evaluates the reliable tree collection ObjectStreams im-
plementation. We evaluate its performance by comparing it to two alternative
implementations. Both alternative implementations use a single packet for every
sampled data set, similar to TinyDB [MFHW03] and SwissQM [MAK07]. The
first alternative – called unreliable – transports the sensor data in a best-effort
manner, without the use of acknowledgements and retransmissions. The other
implementation, called retransmit uses acknowledgements and retransmissions
similar to the SensorScheme implementation: Parent nodes will send an ac-
knowledgement upon reception of packets containing sensor data items. When
the sender does not receive the acknowledgement, it retransmits the packet up
to 5 times, and reselects a parent if the fifth retransmission was not successful
either, after which transmission restarts. All three protocols use the TinyOS 2
Collection protocol [Netb] to create and maintain the routing tree. The com-
munication involved in tree construction and maintenance is not included in the
measurements reported here.

The goal of the tree collection protocol is to transport sampled sensor data
to the root of the routing tree. We compare the three implementations on two
properties:

1. The energy-efficiency of delivering individual measurements to the collec-
tion root. Again, we measure the number of packets sent and received to
determine energy-efficiency.

2. The root node is the bottle-neck for a data collection application, and
determines maximum data collection frequency and scaling parameters.
We therefore compare the communication volume to the collection root.

Before discussing the comparative results we first discuss some differences
between the used implementations. Most importantly, both ObjectStreams and
retransmit use reliable communication, whereas unreliable uses only a best-effort
data transport. In case of a packet reception failure from a leaf node to its
parent, unreliable will not be able to deliver the sensor data to the network
root, and hence, a certain percentage of measurements is lost due to unreliable
communication. The ObjectStreams and retransmit implementations achieve a
near 100 % delivery ratio of measurements to the root.
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Figure 9.5: Performance results of the tree routing protocol evaluation.
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We have again run simulations with 700 nodes, with different network den-
sities as show in the horizontal axis in the graphs of Figure 9.5, and in the case
of the ObjectStreams with varying packet sizes between 28 and 120 bytes of
payload. During this experiment, the simulation first runs for some time while
the network forms a routing tree. After the routing tree stabilizes, we again
obtain data averaged over 20 rounds.

Figure 9.5 (a) shows the results of running unreliable on networks of varying
density. The different network densities result in different routing trees. Most
important to these results, the tree depth, measured as the average number of
hops to the root, is inversely proportional to the network connectivity, as shown
in (a).1. The probability of values sent in a best-effort fashion being delivered to
the root depends directly on the depth of the root and the reception probability
of the individual links between nodes and their parent. Graph (a).4. shows the
percentage of values sent from each node that reaches the collection root (using
the right-side axis). The number of packets nodes send per round is shown in
(a).2. From these values we obtain a measure of efficiency as the number of
messages (averaged over all nodes) sent per value delivered at the root, shown
in graph (a).3.

The retransmit implementation operates similarly, with the exception that
communication between a node and its parent is acknowledged and retransmit-
ted until successful according to the method described above. In the absence
of bandwidth and buffer limitations in our simulations, communication between
nodes and the root is effectively 100 % reliable.

Figure 9.5 (b)1. shows the average number of values (re)transmitted per
period, which is equal to the average humber of hops, shown in Figure 9.5 (a)1.
Due to packet loss and retransmissions, nodes send a larger number of packets
per period, shown in (b)2. The number of retransmissions, obtained by (b)2/(b)1
is show in (b)3 (using the right-side axis). Our efficiency metric of the average
number of packets sent per value received at the root is represented by (b)2.
Interestingly, unreliable and retransmit perform practically identical.

The two alternative approaches are not dependent on packet size since both
transmit only a single measurement per packet, and 2D graphs sufficiently con-
vey their performance characteristics. The ObjectStreams characteristics are
dependent on packet size again and require 3D presentation again. Figure 9.5
(c) presents ObjectStreams performance. Analogous to Figure 9.5 (b) Figure 9.5
(c)1, 2 and 3 show resp. the unique number of packets sent by ObjectStreams,
the number of packets sent including retransmissions, and the fraction of these
two, indicating the frequency of retransmissions. As is to be expected, the re-
sults are similar in to the retransmit alternative, but requiring fewer packets
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Figure 9.6: Performance results of the tree routing protocol evaluation.

to transmit. Except for sparse networks and small packet sizes, ObjectStreams
requires just above 1 packet per value received at the root. Including retransmis-
sions as a result of unreliable wireless links, this amounts to about 1.5 packets
per received value.

Figure 9.6 offsets ObjectStreams’ performance with both alternatives by
dividing ObjectStreams’ results by either alternative. The graphs show that
for most networks, ObjectStreams is able to reduce communication by 50 % or
more, depending on the network density.

SensorScheme requires considerably less communication because it is able to
transport multiple sensor measurements in each packet. For sparser networks,
where nodes are at greater distances from each other, the tree construction
algorithm creates deep trees, consisting of connections to parent node that have
a high probability of failing. Denser networks need less communication, as a
result of lower packet loss rates and reduced tree depth. Figure 9.5 (b) shows
improvement SensorScheme makes over the other implementations by dividing
the the unreliable and retransmit graph data of (a) by the SensorScheme data.

9.3.4 Conclusion

We have compared the cost of communication when using ObjectStreams to
alternative implementation strategies for two different communication proto-
cols: the two-hop gossip protocol used in the intruder detection application and
the collection protocol used with environmental monitoring. We have selected
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protocols that are described in the state of the art, and that would require a
comparable implementation effort, using general-purpose communication pro-
tocols such as abstract regions [WM04], the Contiki Rime stack [Dun07] or the
TinyOS Collection protocol [Netb]. We have taken a look at how each of the
alternatives compare in terms of communication cost measured as the number
of messages transmitted and received and the memory needed to run the appli-
cation as well as application performance measured as the number of data items
delivered to the application.

In the case of the two-hop gossip protocol ObjectStreams holds the middle
between the two alternatives. Objectstreams is somewhat more expensive in
terms of communication than the more efficient alternative, multi-packet. On
the other hand, ObjectStreams requires considerably less memory. They deliver
almost equal application performance. Single-packet represents the opposite side
of the spectrum with extreme memory-efficiency and superior application perfor-
mance exchanged for significant communication cost. From these observations
one might argue that ObjectStreams performs satisfactorily for real applications
where trade-offs need to be made on energy-efficiency as well as memory use.

For this particular application it might well be possible to construct a pro-
tocol that is even more efficient, both regarding communication and memory by
building application-specific data structures and communication protocols. This
will be, however, at the expense of considerable more application construction
time and loosing SensorScheme’s reprogrammability and safety.

The second experiment, collecting data from the entire network shows the
potential reduction in communication by 50 % or more with the use of multi-
packet encoding of variably sized data. The nature of the application, where the
structure and size of data from each node is determined at run time makes the
use of multi-packet messages non-trivial for implementations such as TinyDB
and SwissQM, and even more so for QueryVM. The use of ObjectStreams to
encode multi-packet messages clearly shows the benefits of SensorScheme: it
supports a wider variety of queries, as we discussed earlier, and in the same
time can reduce the communication requirements.
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Chapter 10

Conclusions

This dissertation described the SensorScheme software platform and its design
principles, motivated by four real world application scenarios. This work has
reviewed the state of the art of tools and techniques in use on wireless sensor
network platforms and discussed their applicability for the example platform
scenarios. The SensorScheme platform extends the state of the art, introducing
new techniques to build short and efficient wireless sensor network programs.

To recapitulate on the contributions stated in the introduction (Chapter 1)
we can conclude the following:

1. We have shown that the SensorScheme platform enables wireless loading
and programming of wireless sensor networks. As the state of the art
shows, providing wireless programming on small WSN platforms comes
at the price of reduced execution efficiency and increased memory use.
SensorScheme is no exception in this respect, but is able to use Scheme’s
homo-iconic program representation to transfer and execute programs
with minimal additional complexity.

The SensorScheme’s design ensures a small and efficient implementation,
and shows that a combination of features such as wireless program loading,
platform independence, a safe execution environment, garbage collection,
and concurrency and blocking I/O are achievable targets even for low
power WSN platforms. Furthermore, a combination of SensorScheme’s
programming techniques, program representation and network encoding
ensure that SensorScheme applications are small and efficient to transport
across the network, in typically just a few hundreds of bytes.
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As the comparison for environmental monitoring shows, using Sensor-
Scheme one is able to reduce code size of applications while adding func-
tionality and flexibility. Still, energy use of the resulting program is
roughly the same.

Furthermore, we have shown that SensorScheme causes only marginal ad-
ditional energy use and no significant delays due to program interpretation
and garbage collection.

2. SensorScheme’s other contribution is the use of a dialect of Scheme to
write sensor network application. Using the application scenario’s this
thesis explores the ways in which sensor network applications may be built
with the availability of a programming language that includes first class
functions and closures, and continuations. We have shown that sensor net-
work applications are particularly suitable to a functional programming
approach. Furthermore, closures in SensorScheme are a powerful program
structuring technique, obviating the need of object-oriented language fea-
tures. The availability of continuations enables the use of co-routines,
which allows programs to be structured similar to multi-threaded appli-
cations, including the use of blocking I/O calls. All of these program
structuring techniques make it possible to drastically reduce the size of
WSN applications.

3. SensorScheme includes the ObjectStreams communication mechanism, unique
in the sensor network field of research, which again aid in the construction
of a wide variety of applications while keeping them short and easy to
build.

ObjectStreams transfers messages that may be larger than single pack-
ets, which makes applications independent of the packet size of the target
platform, and simplifies communication of large or variably-sized payloads.
Furthermore, ObjectStreams transports data structures rather than sim-
ply arrays of bytes, which eliminates the need for application code to pack
and unpack message content. ObjectStreams uses a compressing serializa-
tion method to efficiently transport data of arbitrary size and structure.

ObjectStreams transports application data as well as program code in a
uniform way, as a result of SensorScheme’s unique property that program
code is just a special case of application data, and can thus be treated
equally.
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4. SensorScheme uses partial evaluation to specialize a general program de-
scribing the behavior of the entire network into node-specific variants that
are significantly shorter. We use this specialization method as a new way
to macro-program heterogeneous sensor networks.

The main benefit of this program deployment procedure for heterogeneous
WSNs is that the individual specialized programs can be much smaller
than the generic network-wide program. This leads to decreased communi-
cation use during program transfer, and may significantly reduce memory
requirements. Furthermore, our method merges program logic and con-
figuration data, so installing a new program and configuring the network
takes place using the same injection mechanisms built-in in the Sensor-
Scheme platform, (thereby eliminating the need for separate mechanisms
of reconfiguring the devices). This in turn reduces the total program size
even further, and simplifies development and operation of WSN applica-
tions.
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Appendix A

Formal definition

(ssmodule eval
2 (require "thesis-base.ss")

4 (define (my-eval expr env)
(cond

6 [(or (number? expr)
(boolean? expr)

8 (null? expr)) expr]
[(symbol? expr) (lookup expr env)]

10
[(eq? (car expr) ’quote) (cadr expr)]

12 [(eq? (car expr) ’if) (if (not (eq? (my-eval (cadr expr) env) #f))
(my-eval (caddr expr) env)

14 (if (not (null? (cdddr expr))) (my-eval (cadddr expr) env) #f))]
[(eq? (car expr) ’lambda) (cons ’proc (cons env (cdr expr)))]

16 [(eq? (car expr) ’set!) (update! (cadr expr) (my-eval (caddr expr) env) env)]
[(eq? (car expr) ’define) (extend! (cadr expr) (my-eval (caddr expr) env))]

18 [else
(my-apply (my-eval (car expr) env) (map (lambda (e) (my-eval e env)) (cdr expr)))]))

20
(define (my-apply proc args)

22 (cond [(primitive? proc) (apply-prim proc args)]
[(eq? (car proc) ’proc)

24 (eval-body (cdddr proc) ; proc. body
(bind (caddr proc) ; parameters

26 args
(cadr proc)))])) ; captured environment

28

30 (define (eval-body exprs env)
(if (null? (cdr exprs)) ; last expression, return its result

32 (my-eval (car exprs) env)
((lambda ()

34 (my-eval (car exprs) env)
(eval-body (cdr exprs) env)))))

36
(define (bind vars vals env)

38 (cond [(and (null? vars) (null? vals)) env]
[(and (pair? vars) (pair? vals) (symbol? (car vars)))

40 (cons (cons (car vars) (car vals))
(bind (cdr vars) (cdr vals) env))]

42 [(symbol? vars) (cons (cons vars vals) env)]
[else (error ’parameter-mismatch)]))

44
(define (lookup var env)

46 (let ([l (assoc var env)])
(if l (cdr l)
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48 (let ([g (assoc var global-env)])
(if g (cdr g)

50 (error ’variable-not-found))))))

52 (define (update! var val env)
(let ([l (assoc var env)])

54 (if l (set-cdr! l val)
(let ([g (assoc var global-env)])

56 (if g (set-cdr! g val)
(error ’variable-not-found))))))

58
(define (extend! var val)

60 (let ([v (assoc var global-env)])
(if (pair? v)

62 (set-cdr! v val)
(set! global-env (cons (cons var val) global-env)))))

64
; use the eval definition by calling it

66 (define global-env ’([cons . (prim cons)]
[car . (prim car)]

68 [cdr . (prim cdr)]))

70 )
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Solutions

B.1 Intruder detection

(ssmodule intruder-twohop
2 (require "thesis-base.ss")

4 (define-const threshold 15)

6 ; return node value with maximum reading
(define (max-node l r)

8 (if (> (second l) (second r)) l r))

10 (define (process-neighs ls)
(unless (or (null? ls) (member (caar ls) id-ls))

12 (set! id-ls (cons (caar ls) id-ls))
(max-node-fold (car ls) #f)

14 (sum-v-fold (second (car ls)) #f)
(sum-x-fold (third (car ls)) #f)

16 (sum-y-fold (fourth (car ls)) #f)
(process-neighs (cdr ls))))

18
(define-handler (neigh-msg ls)

20 ; add direct neightbor’s data to neigh-ls
; only if node seds its own data

22 (when (= src (caar ls))
(set! neigh-ls (cons (car ls) neigh-ls)))

24 ; calculate partial max-node and centroid
(process-neighs (cdr ls)))

26
(define neigh-ls ())

28 (define max-node-fold (closure-fold max-node ()))
(define sum-v-fold (closure-fold + 0))

30 (define sum-x-fold (closure-fold + 0))
(define sum-y-fold (closure-fold + 0))

32 (define id-ls ())
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34 (define (time-loop t)
(call-at-time (+ t 16) time-loop)

36 (let* ([v (sense-mag)]
[me (list id v (* v (x-coord)) (* v (y-coord)))]

38 [sum-v (sum-v-fold 0 #t)]
[sum-x (sum-x-fold 0 #t)]

40 [sum-y (sum-y-fold 0 #t)]
[msg-ls (if (> v threshold) (cons me neigh-ls) neigh-ls)])

42 (set! neigh-ls ()) ; reset list of received neighbors
(max-node-fold me #f) ; add own data

44 (when (eq? me (max-node-fold () #t))
(send-root (msg neigh-result (list sum-v (/ sum-x sum-v) (/ sum-y sum-v)))))

46 (bcast (msg neigh-msg msg-ls))))

48 (time-loop (now))

50 )

Listing B.1: Two hop intruder detection program.

B.2 Environmental monitoring

(ssmodule monitoring
2 (require "thesis-base.ss")

4 ; definitions of query
(define period (* 30 16))

6 (define duration (* 30 16 60))

8 (define (init)
(if (= (+ (/ (x-coord) 10) (* (/ (y-coord) 10) 4)) 6)

10 (list (list id (sense-temp)))
()))

12
(define (proc l r)

14 (append l r))

16 ; auxillary functions
(define (current-epoch)

18 (/ (synced-now) period))

20 (define recv-fold (closure-fold proc (init)))

22 ; handler called when receiveing message from children
(define-handler (parent-msg val)

24 (recv-fold val #f))

26 (define (time-loop t)
(unless (> (+ start-time duration) (synced-now))

28 (call-at-time/synced (+ t period) time-loop))
(let ([init-val (init)])

30 (call-at-time/synced (+ t (* (- 8 (hops-to-root)) 16))
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(lambda (t)
32 (let ([agg-val (recv-fold init-val #t)])

(unless (null? agg-val))
34 (send-parent (msg parent-msg agg-val)))))))

36 (define start-time (synced-now))
(time-loop (current-epoch))

38
)

Listing B.2: Environmental monitoring application.

1 (ssmodule ssquery
(require "thesis-base.ss" )

3
(define query-ls ())

5
(define-handler (parent-msg qid val)

7 ; call handle-parent-msg of query ’qid’
((cdr (assoc qid query-ls)) val))

9
(define-handler (query-msg qid period duration proc init)

11 (let ([recv-fold (closure-fold (eval proc) ((eval init)))]
[start-time (now)])

13 (define (handle-parent-msg val)
(recv-fold val #f))

15
(define (current-epoch)

17 (/ (now) period))

19 (define (time-loop t)
(if (> (+ start-time duration) (now))

21 (set! query-ls (filter (lambda (el) (not (eq? el qid))) query-ls))
(call-at-time/synced (+ t period) time-loop))

23 (let ([init-val ((eval init))])
(call-at-time/synced (+ t (* (- 8 (hops-to-root)) 16))

25 (lambda (t)
(let ([agg-val (recv-fold init-val #t)])

27 (unless (null? agg-val))
(send-parent (msg parent-msg agg-val)))))))

29
(set! query-ls (cons (cons qid handle-parent-msg) query-ls))

31 (time-loop (current-epoch))))

33 )

Listing B.3: SSQuery
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B.3 Logistics

1 (ssmodule logistics
(require "thesis-base.ss" )

3 (define alerter print)
(define (blink-leds col)

5 (case col
[(red) 1]

7 [(green) 2]
[(blue) 4]))

9 (define (send/ack n m dst msg) msg)

11 (define state 0)
(define (log-state-change new-state)

13 (set! state new-state)
(log (now) new-state ()))

15
(define (msg-filter type key val? ls)

17 (filter (lambda (el)
(and (eq? (second el) type)

19 (let ([v (assoc key (third el))])
(if v (val? (cdr v)))))) ls))

21
(define msg-ls ())

23 (define-handler (logistics-msg type kvlist)
(set! msg-ls (cons (list src type kvlist) msg-ls)))

25
(define properties ())

27 (define (set-property! key val)
(set! properties (cons (cons key val) properties)))

29
(define (state-loop alarm? alarmer transit?)

31 (call/cc
(lambda (k)

33 (define (time-loop t)
(if (transit? msg-ls) (k #t)

35 (begin
(call-at-time (+ t 80) time-loop)

37 (when (alarm? msg-ls) (alerter msg-ls))
(set! msg-ls ())

39 (bcast (msg logistics-msg ’goods
properties)))))

41 (time-loop (now))
(k #f))))

43
; coffee checker definitions

45 (define (coffee-checker t)
(call-at-time (+ now 160))

47 (bcast (msg content-msg ’bananas)))

49 (define-handler (content-msg content)
(when (eq? content ’coffee)

51 (blink-leds ’red)
(bcast (msg alarm-msg ’dangerous-content ’coffee))))

53
;;;;; main program

55 ; process 1
(coffee-checker (now))

57
;process 2

59 (call-at-time (now) (lambda (t)
(set-property! ’content ’bananas)

61 ; 1. at farm
(log-state-change ’farm)

63 (set-property! ’dest ’Rio-harbor)
(state-loop

65 ; alarm-condition: detected peers with different destination
(lambda (ls)

67 (not (eq? ()
(msg-filter ’goods ’dest

69 (lambda (v)
(not (eq? v ’Rio-harbor))) ls))))

71 ;alarm-procedure: blink red leds
(lambda (ls) (blink-leds ’red))

73 ; transition-condition: detect truck with destiation Rio-harbor

198



B.3. LOGISTICS

(lambda (ls) ; list of trucks with destination is not empty
75 (not (eq? ()

(msg-filter ’transport ’dest
77 (lambda (v)

(eq? v ’Rio-harbor)) ls)))))
79

; 2. in truck
81 (log-state-change ’truck)

(state-loop
83 ; alarm-condition: truck not found anymore

(lambda (ls)
85 (eq? ()

(msg-filter ’transport ’dest
87 (lambda (v)

(not (eq? v ’Rio-harbor))) ls)))
89 ; alarm-procedure: blink red leds

(lambda (ls) (blink-leds ’red))
91 ; transition-condition: detect harbor and absence of truck

(lambda (ls)
93 (and (not (eq? ()

(msg-filter ’infrastructure ’location
95 (lambda (v)

(eq? v ’Rio-harbor)) ls)))
97 (eq? ()

(msg-filter ’transport ’dest
99 (lambda (v)

(not (eq? v ’Rio-harbor))) ls)))))
101

; 3. on harbor dock
103 (log-state-change ’harbor)

(set-property! ’dest ’Roterdam-distcenter)
105 (state-loop

; alarm-condition: not on right dock position?
107 (lambda (ls)

(eq? ()
109 (msg-filter ’infrastructure ’dock-nr

(lambda (v)
111 (eq? v 364))

(msg-filter ’infrastructure ’location
113 (lambda (v)

(eq? v ’Rio-harbor)) ls))))
115 ; alarm-procedure: send message to dock access point

(lambda (ls) (send/ack 3 5
117 ; send to address of harbor access point

(caar (msg-filter ’infrastructure ’location
119 (lambda (v)

(eq? v ’Rio-harbor)) ls))
121 (msg alarm-msg properties)))

; transition-condition: detect container with right shipping-id
123 (lambda (ls)

(not (eq? ()
125 (msg-filter ’transport ’shipping-id

(lambda (v)
127 (eq? v ’3476353)) ls)))))

129 ; 4. inside container
(log-state-change ’container)

131 (state-loop
; alarm-condition: not with peers to go to distcenter

133 (lambda (ls)
(eq? ()

135 (msg-filter ’infrastructure ’location
(lambda (v)

137 (eq? v ’Roterdam-distcenter)) ls)))
;alarm-procedure: blink red, and send message to container

139 (lambda (ls) (blink-leds ’red)
(send/ack 3 5

141 (caar (msg-filter ’transport ’shipping-id
(lambda (v)

143 (eq? v ’3476353)) ls)) ; address of container
(msg alarm-msg properties)))

145 ;transition-condition: detect container with right shipping-id
(lambda (ls)

147 (not (eq? ()
(msg-filter ’infrastructure ’location

149 (lambda (v)
(eq? v ’Roterdam-distcenter)) ls)))))))
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151 )
; 5. at distribution center

Listing B.4: Itinerary program of the logistics scenario.
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B.4 Smart office

(ssmodule smart-office
2 (require "thesis-base.ss" "office-constants.ss")

4 ; auxiliary functions
(define-const room-nr car)

6
(define-const room-coords cdr)

8
(define-const node-coords caddr)

10
(define (within? node room)

12 (= (car node) (car room)))

14 (define (room-of nd)
(room-nr (find (lambda (el)

16 (within? (node-coords (assoc nd nodes-tbl))
(room-coords el))) rooms-tbl)))

18
(define (nodes-in-room room)

20 (map car (filter (lambda (el) (= room (room-of (car el)))) nodes-tbl)))

22 (define-const (room-temp room) 25)

24 (define (adjust-temp val)
(bcast (msg adjust-temp val)))

26
(define (average ls)

28 (/ (foldr + 0 ls) (length ls)))

30 (define (node-type node)
(cadr (assoc node nodes-tbl)))

32
; node type checking functions

34 (define (node-is-switch? node)
(nth 0 (cdr (assoc (node-type node) types-tbl))))

36
(define (node-is-temp? node)

38 (nth 1 (cdr (assoc (node-type node) types-tbl))))

40 (define (node-is-light? node)
(nth 4 (cdr (assoc (node-type node) types-tbl))))

42
(define (node-is-radiator? node)

44 (nth 5 (cdr (assoc (node-type node) types-tbl))))

46 ; connect a switch to all lights in the room
(define-event (light-switch on?)

48 (when (node-is-switch? id)
(let ([room (room-of id)])

50 (for-each (lambda (el)
(send-local el (msg switch-light-hdl on?)))

52 (filter node-is-light? (nodes-in-room room))))))

54 (define-handler (switch-light-hdl)
(when (node-is-light? id)

56 (toggle-light!)))

58 (define collect-ls ())
; use average temperature of room for heating to control radiator

60 (define-handler (collect-temp-hdl room-num val)
(when (node-is-temp? id)

62 ; collect protocol
(if (= room-num (room-of id))

64 (set! collect-ls (cons val collect-ls)))))

66 (define (sense-temp-loop t)
(when (node-is-temp? id)

68 (call-at-time (+ t (* 16 60)) sense-temp-loop)
(let ([room (room-of id)])

70 (when (= id (max collect-ls))
(for-each

72 (lambda (el)
(send-local el (msg report-temp-hdl (average (map cdr collect-ls)))))
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74 (filter node-is-radiator? (nodes-in-room room))))
(set! collect-ls ())

76 (bcast (msg collect-temp-hdl room (sense-temp))))))

78 (when (node-is-temp? id)
(sense-temp-loop (now)))

80
; radiator nodes

82 (define-handler (report-temp-hdl val)
(when (node-is-radiator? id)

84 (adjust-temp (- (room-temp (room-of id)) val))))
)

Listing B.5: Generic program of the smart office scenario.
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Source and auxiliary files

The following module files are part of the SensorScheme library, and contain
the procedure and macro definitions used elsewhere.

C.1 Base library

(ssmodule thesis-base
2

(provide (all-from "std.ss"))
4 ; include all the primitives

(include id car cdr set-car! set-cdr! cons + - * /
6 > >= < <= eq?

null? pair? symbol? number? boolean? not
8 random now call-at-time sense-temp blink toggle-light!

append list
10 print call/cc eval apply)

12 ; collection protocol library
(provide (all-from "collection.ss"))

14
; program injection library

16 (require "inject.ss")
(include recv-handoff)

18
; definitions for example programs

20 (provide group closure-fold)

22 (define (group fn l r)
(foldl (lambda (a b)

24 (if (assoc (first a) b)
b

26 (cons a b)))
(map (lambda (l-area)

28 (let ([r-area (assoc (first l-area) r)])
(if r-area

30 (fn l-area r-area)
l-area))) l) r))

32
(define (closure-fold kons knil)

34 (lambda (el return?)
(print ’closure-fold knil el return?)
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36 (if return?
(begin0 knil (set! knil el))

38 (set! knil (kons (car el) knil)))))

40 ; networking definitions
(provide handle send-local bcast msg)

42
(define (handle src msg)

44 (apply (eval (car msg)) (cons src (cdr msg))))

46 (define (bcast mess)
(send-local -1 mess))

48
(define-primitive send-local (sender AMSender))

50 (define-primitive recv-local (receiver AMReceiver))

52 (define-macro (msg tag . body)
‘(list ’,tag ,@body))

54
(include send-local recv-local)

56 )

Listing C.1: base library, defines node configuration and the set of primitives
included.

C.2 Standard library

(ssmodule std
2 (provide (all-from "macros.ss"))

(provide (all-from "primitives.ss"))
4

(provide caar cadr cddr caddr cdddr cadddr
6 first second third fourth fifth nth length

assoc member find foldl foldr for-each map filter
8 max =)

10 (define (caar l)
(car (car l)))

12
(define (cadr l)

14 (car (cdr l)))

16 (define (cddr l)
(cdr (cdr l)))

18
(define (caddr l)

20 (car (cdr (cdr l))))

22 (define (cdddr l)
(cdr (cdr (cdr l))))

24
(define (cadddr l)

26 (car (cdr (cdr (cdr l)))))

28 (define-const first car)
(define-const second cadr)

30 (define-const third caddr)
(define-const fourth cadddr)

32 (define-const fifth caddddr)

34 (define (nth n ls)
(if (= n 0) (car ls) (nth (- n 1) (cdr ls))))

36
(define (length ls)

38 (if (null? ls) 0 (+ 1 (length (cdr ls)))))

40 (define (assoc k ls)
(cond [(null? ls) #f]
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42 [(eq? k (caar ls)) (car ls)]
[else (assoc k (cdr ls))]))

44
(define (member x ls)

46 (cond [(null? ls) #f]
[(eq? (car ls) x) ls]

48 [else (member x (cdr ls))]))

50 (define (find fn ls)
(cond [(null? ls) #f]

52 [(fn (car ls)) (car ls)]
[else (find fn (cdr ls))]))

54
(define (foldl fn init ls)

56 (if (null? ls)
init

58 (foldl (fn (car ls) init) (cdr ls))))

60
(define (foldr fn init ls)

62 (if (null? ls)
init

64 (fn (car ls) (foldr fn init (cdr ls)))))

66 (define (for-each fn ls)
(if (null? ls)

68 #t
(begin (fn (car ls)) (for-each fn (cdr ls)))))

70
(define (filter fn ls)

72 (cond [(null? ls) ’()]
[(fn (car ls)) (cons (car ls) (filter fn (cdr ls)))]

74 [else (filter fn (cdr ls))]))

76 (define (map fn ls)
(if (pair? ls)

78 (cons (fn (car ls)) (map fn (cdr ls)))
’()))

80
(define (max ls)

82 (cond ((null? ls) 0)
((null? (cdr ls) (car ls)))

84 (else (let ([l (cdr ls)]
[r (max (cdr ls))])

86 (if (> () r) l r)))))

88 (define-const = eq?)
)

Listing C.2: Standard library, included in all source files. It contains general-
purpose function definitions.

C.3 Macro definitions

1 (ssmodule macros
(define-macro define :

3 (define (proc1 param1 param2 . param3) body ...)
=>

5 (define proc1 (lambda (param1 param2 . param3) body ...))
)

7
(define-macro begin ::

9 (begin (print a) b)
=>

11 (let () (print a) b))

13 (define-macro when ::)
(define-macro unless ::)

205



APPENDIX C. SOURCE AND AUXILIARY FILES

15
(define-macro let ::

17 (let ([a (proc1 1 2)]
[b (proc2 3 4)])

19 body ...)
=>

21 ((lambda (a b) body ...)
(proc1 1 2) (proc2 3 4)))

23
(define-macro let* ::

25 (let* ([a (proc1 1 2)]
[b (proc2 a)])

27 body ...)
=>

29 (let ([a (proc1 1 2)])
(let ([b (proc2 a)])

31 body ...)))

33 (define-macro letrec ::
(letrec ([recproc (lambda (x) (recproc x))])

35 (recproc 1))
=>

37 (let ([recproc ()])
(set! recproc (lambda (x) (recproc x)))

39 (recproc 1)))

41 (define-macro cond ::
(cond [(null? x) x]

43 [(pair? x) (print x) (car x)]
[else (error)])

45 =>
(if (null? x) x

47 (if (pair? x) (begin (print x) (car x))
(error))))

49
(define-macro case ::

51 (case var
[(a b c) 1]

53 [(d) 2]
[else #f])

55 =>
(let ([v var])

57 (if (member v ’(a b c)) 1
(if (eq? v ’d) 2 #f))))

59
(define-macro and ::

61 (and a b c)
=>

63 (if a (if b c)))

65 (define-macro or ::
(or a b c)

67 =>
(let ([v1 a])

69 (if v1 v1
(let ([v2 b])

71 (if v2 v2 c)))))

73 (define-macro define-handler ::
(define-handler (sample-msg val1 val2 val3) body ...)

75 =>
(include sample-msg)

77 (define (sample-msg (src val1 al2 val3) body ...)))

79 (define-macro define-event ::
(define-event (user-button on?)

81 (if on? (blink 7)
(blink 0)))

83 =>
(define (user-button-loop on?)

85 (if on?
(blink 7)

87 (blink 0))
(user-button-loop (user-button)))

89 (user-button-loop (user-button)))

91 (define-macro msg ::
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(msg sample-msg val1 val2 val3)
93 =>

(list ’sample-msg val1 val2 val3))
95 )

Listing C.3: Definitions of all macros used throughout this work. Macros are
defined here as pseudo-code showing examples of use and expansion result of
the macro.

C.4 Collection protocol definitions

1 (ssmodule collection

3 (provide
send-root send-parent recv-parent etx parent neighbors neighbors/quality)

5
(define-primitive send-root (sender CollectSender))

7 (define-primitive send-parent (sender InterceptSender))
(define-primitive recv-parent (receiver InterceptReceiver))

9

11 (define-primitive etx (simple EtxPrim))
(define-primitive parent (simple ParentPrim))

13 (define-primitive hops-to-root (simple HopsPrim))
(define-primitive neighbors (simple NeighborsPrim))

15 (define-primitive neighbors/quality (simple NeighQualityPrim))

17 )

Listing C.4: Definitions of primitives used to make available the collection tree
protocol to SensorScheme programs.
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